Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
JAMA ; 326(17): 1690-1702, 2021 Nov 02.
Article in English | MEDLINE | ID: covidwho-1525402

ABSTRACT

Importance: The evidence for benefit of convalescent plasma for critically ill patients with COVID-19 is inconclusive. Objective: To determine whether convalescent plasma would improve outcomes for critically ill adults with COVID-19. Design, Setting, and Participants: The ongoing Randomized, Embedded, Multifactorial, Adaptive Platform Trial for Community-Acquired Pneumonia (REMAP-CAP) enrolled and randomized 4763 adults with suspected or confirmed COVID-19 between March 9, 2020, and January 18, 2021, within at least 1 domain; 2011 critically ill adults were randomized to open-label interventions in the immunoglobulin domain at 129 sites in 4 countries. Follow-up ended on April 19, 2021. Interventions: The immunoglobulin domain randomized participants to receive 2 units of high-titer, ABO-compatible convalescent plasma (total volume of 550 mL ± 150 mL) within 48 hours of randomization (n = 1084) or no convalescent plasma (n = 916). Main Outcomes and Measures: The primary ordinal end point was organ support-free days (days alive and free of intensive care unit-based organ support) up to day 21 (range, -1 to 21 days; patients who died were assigned -1 day). The primary analysis was an adjusted bayesian cumulative logistic model. Superiority was defined as the posterior probability of an odds ratio (OR) greater than 1 (threshold for trial conclusion of superiority >99%). Futility was defined as the posterior probability of an OR less than 1.2 (threshold for trial conclusion of futility >95%). An OR greater than 1 represented improved survival, more organ support-free days, or both. The prespecified secondary outcomes included in-hospital survival; 28-day survival; 90-day survival; respiratory support-free days; cardiovascular support-free days; progression to invasive mechanical ventilation, extracorporeal mechanical oxygenation, or death; intensive care unit length of stay; hospital length of stay; World Health Organization ordinal scale score at day 14; venous thromboembolic events at 90 days; and serious adverse events. Results: Among the 2011 participants who were randomized (median age, 61 [IQR, 52 to 70] years and 645/1998 [32.3%] women), 1990 (99%) completed the trial. The convalescent plasma intervention was stopped after the prespecified criterion for futility was met. The median number of organ support-free days was 0 (IQR, -1 to 16) in the convalescent plasma group and 3 (IQR, -1 to 16) in the no convalescent plasma group. The in-hospital mortality rate was 37.3% (401/1075) for the convalescent plasma group and 38.4% (347/904) for the no convalescent plasma group and the median number of days alive and free of organ support was 14 (IQR, 3 to 18) and 14 (IQR, 7 to 18), respectively. The median-adjusted OR was 0.97 (95% credible interval, 0.83 to 1.15) and the posterior probability of futility (OR <1.2) was 99.4% for the convalescent plasma group compared with the no convalescent plasma group. The treatment effects were consistent across the primary outcome and the 11 secondary outcomes. Serious adverse events were reported in 3.0% (32/1075) of participants in the convalescent plasma group and in 1.3% (12/905) of participants in the no convalescent plasma group. Conclusions and Relevance: Among critically ill adults with confirmed COVID-19, treatment with 2 units of high-titer, ABO-compatible convalescent plasma had a low likelihood of providing improvement in the number of organ support-free days. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
COVID-19/therapy , ABO Blood-Group System , Adult , Aged , Critical Illness/therapy , Female , Hospital Mortality , Humans , Immunization, Passive , Length of Stay , Logistic Models , Male , Middle Aged , Respiration, Artificial/statistics & numerical data , Treatment Failure , Vasoconstrictor Agents/therapeutic use
2.
PLoS Med ; 18(7): e1003656, 2021 07.
Article in English | MEDLINE | ID: covidwho-1298076

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) antibody neutralization response and its evasion by emerging viral variants and variant of concern (VOC) are unknown, but critical to understand reinfection risk and breakthrough infection following vaccination. Antibody immunoreactivity against SARS-CoV-2 antigens and Spike variants, inhibition of Spike-driven virus-cell fusion, and infectious SARS-CoV-2 neutralization were characterized in 807 serial samples from 233 reverse transcription polymerase chain reaction (RT-PCR)-confirmed Coronavirus Disease 2019 (COVID-19) individuals with detailed demographics and followed up to 7 months. A broad and sustained polyantigenic immunoreactivity against SARS-CoV-2 Spike, Membrane, and Nucleocapsid proteins, along with high viral neutralization, was associated with COVID-19 severity. A subgroup of "high responders" maintained high neutralizing responses over time, representing ideal convalescent plasma donors. Antibodies generated against SARS-CoV-2 during the first COVID-19 wave had reduced immunoreactivity and neutralization potency to emerging Spike variants and VOC. Accurate monitoring of SARS-CoV-2 antibody responses would be essential for selection of optimal responders and vaccine monitoring and design.


Subject(s)
Antibodies, Neutralizing/immunology , SARS-CoV-2/pathogenicity , Adult , Antibodies, Viral/immunology , Female , Humans , Male , Middle Aged , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology
3.
Viruses ; 13(2)2021 02 04.
Article in English | MEDLINE | ID: covidwho-1063429

ABSTRACT

Serological testing for SARS-CoV-2-specific antibodies provides important research and diagnostic information relating to COVID-19 prevalence, incidence and host immune response. A greater understanding of the relationship between functionally neutralising antibodies detected using microneutralisation assays and binding antibodies detected using scalable enzyme immunoassays (EIA) is needed in order to address protective immunity post-infection or vaccination, and assess EIA suitability as a surrogate test for screening of convalescent plasma donors. We assessed whether neutralising antibody titres correlated with signal cut-off ratios in five commercially available EIAs, and one in-house assay based on expressed spike protein targets. Sera from recovered patients or convalescent plasma donors who reported laboratory-confirmed SARS-CoV-2 infection (n = 200), and negative control sera collected prior to the COVID-19 pandemic (n = 100), were assessed in parallel. Performance was assessed by calculating EIA sensitivity and specificity with reference to microneutralisation. Neutralising antibodies were detected in 166 (83%) samples. Compared with this, the most sensitive EIAs were the Cobas Elecsys Anti-SARS-CoV-2 (98%) and Vitros Immunodiagnostic Anti-SARS-CoV-2 (100%), which detect total antibody targeting the N and S1 antigens, respectively. The assay with the best quantitative relationship with microneutralisation was the Euroimmun IgG. These results suggest the marker used (total Ab vs. IgG vs. IgA) and the target antigen are important determinants of assay performance. The strong correlation between microneutralisation and some commercially available assays demonstrates their potential for clinical and research use in assessing protection following infection or vaccination, and use as a surrogate test to assess donor suitability for convalescent plasma donation.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing , COVID-19/immunology , Enzyme-Linked Immunosorbent Assay , Neutralization Tests , SARS-CoV-2/immunology , COVID-19/diagnosis , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , ROC Curve , Sensitivity and Specificity
4.
Vox Sang ; 116(2): 155-166, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-787954

ABSTRACT

BACKGROUND AND OBJECTIVE: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel coronavirus, first identified in China at the end of 2019 and has now caused a worldwide pandemic. In this review, we provide an overview of the implications of SARS-CoV-2 for blood safety and sufficiency. MATERIAL AND METHOD: We searched the PubMed database, the preprint sites bioRxiv and medRxiv, the websites of the World Health Organization, European Centre for Disease Prevention and Control, the US Communicable Diseases Center and monitored ProMed updates. RESULTS: An estimated 15%-46% of SARS-CoV-2 infections are asymptomatic. The reported mean incubation period is 3 to 7 days with a range of 1-14 days. The blood phase of SARS-CoV-2 appears to be brief and low level, with RNAaemia detectable in only a small proportion of patients, typically associated with more severe disease and not demonstrated to be infectious virus. An asymptomatic blood phase has not been demonstrated. Given these characteristics of SARS-CoV-2 infection and the absence of reported transfusion transmission (TT), the TT risk is currently theoretical. To mitigate any potential TT risk, but more importantly to prevent respiratory transmission in donor centres, blood centres can implement donor deferral policies based on travel, disease status or potential risk of exposure. CONCLUSION: The TT risk of SARS-CoV-2 appears to be low. The biggest risk to blood services in the current COVID-19 pandemic is to maintain the sufficiency of the blood supply while minimizing respiratory transmission of SARS-CoV-19 to donors and staff while donating blood.


Subject(s)
Blood Safety , COVID-19/blood , COVID-19/prevention & control , COVID-19/virology , Transfusion Reaction/prevention & control , Blood Transfusion , Geography , Humans , RNA, Viral/analysis , Risk Assessment , SARS-CoV-2 , Safety Management , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL
...