Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Swiss Med Wkly ; 150: w20224, 2020 03 09.
Article in English | MEDLINE | ID: covidwho-2278282

ABSTRACT

A novel coronavirus (SARS-CoV-2) first detected in Wuhan, China, has spread rapidly since December 2019, causing more than 100,000 confirmed infections and 4000 fatalities (as of 10 March 2020). The outbreak has been declared a pandemic by the WHO on Mar 11, 2020. Here, we explore how seasonal variation in transmissibility could modulate a SARS-CoV-2 pandemic. Data from routine diagnostics show a strong and consistent seasonal variation of the four endemic coronaviruses (229E, HKU1, NL63, OC43) and we parameterise our model for SARS-CoV-2 using these data. The model allows for many subpopulations of different size with variable parameters. Simulations of different scenarios show that plausible parameters result in a small peak in early 2020 in temperate regions of the Northern Hemisphere and a larger peak in winter 2020/2021. Variation in transmission and migration rates can result in substantial variation in prevalence between regions. While the uncertainty in parameters is large, the scenarios we explore show that transient reductions in the incidence rate might be due to a combination of seasonal variation and infection control efforts but do not necessarily mean the epidemic is contained. Seasonal forcing on SARS-CoV-2 should thus be taken into account in the further monitoring of the global transmission. The likely aggregated effect of seasonal variation, infection control measures, and transmission rate variation is a prolonged pandemic wave with lower prevalence at any given time, thereby providing a window of opportunity for better preparation of health care systems.


Subject(s)
Coronavirus Infections/epidemiology , Models, Theoretical , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Seasons , COVID-19 , China/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Forecasting , Humans , Incidence , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Prevalence
2.
Swiss Med Wkly ; 150(9-10)2020 02 24.
Article in English | MEDLINE | ID: covidwho-2258226

ABSTRACT

Almost half of the confirmed COVID-19 cases detected so far in the United Kingdom are part of a large cluster of 13 British nationals who tested positive for SARS-CoV-2 in the UK, Spain, and France. Transmissions among this cluster occurred at a ski resort in France, and originated from a single infected traveller returning from a conference in Singapore where he acquired the virus. At least 21 individuals were exposed to the virus, tested, and quarantined, with 13 of those testing positive between the period of 6th February and 15th February. Here, all publicly available information about the primarily UK/France cluster is consolidated, providing a complete and accessible summary of the cases and their connections. Notable in this cluster are the number of individuals infected, the apparent absence of any severe illness among those infected, and a case of a "delayed positive" test during isolation after initially testing negative, at least 7 days after last possible contact.


Subject(s)
Contact Tracing , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Travel , Betacoronavirus , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Disease Outbreaks , France/epidemiology , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Quarantine , SARS-CoV-2 , Singapore , Spain/epidemiology , United Kingdom/epidemiology
3.
Cold Spring Harb Perspect Med ; 12(5)2022 05 27.
Article in English | MEDLINE | ID: covidwho-2283766

ABSTRACT

Our understanding of the still unfolding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic would have been extremely limited without the study of the genetics and evolution of this new human coronavirus. Large-scale genome-sequencing efforts have provided close to real-time tracking of the global spread and diversification of SARS-CoV-2 since its entry into the human population in late 2019. These data have underpinned analysis of its origins, epidemiology, and adaptations to the human population: principally immune evasion and increasing transmissibility. SARS-CoV-2, despite being a new human pathogen, was highly capable of human-to-human transmission. During its rapid spread in humans, SARS-CoV-2 has evolved independent new forms, the so-called "variants of concern," that are better optimized for human-to-human transmission. The most important adaptation of the bat coronavirus progenitor of both SARS-CoV-1 and SARS-CoV-2 for human infection (and other mammals) is the use of the angiotensin-converting enzyme 2 (ACE2) receptor. Relaxed structural constraints provide plasticity to SARS-related coronavirus spike protein permitting it to accommodate significant amino acid replacements of antigenic consequence without compromising the ability to bind to ACE2. Although the bulk of research has justifiably concentrated on the viral spike protein as the main determinant of antigenic evolution and changes in transmissibility, there is accumulating evidence for the contribution of other regions of the viral proteome to virus-host interaction. Whereas levels of community transmission of recombinants compromising genetically distinct variants are at present low, when divergent variants cocirculate, recombination between SARS-CoV-2 clades is being detected, increasing the risk that viruses with new properties emerge. Applying computational and machine learning methods to genome sequence data sets to generate experimentally verifiable predictions will serve as an early warning system for novel variant surveillance and will be important in future vaccine planning. Omicron, the latest SARS-CoV-2 variant of concern, has focused attention on step change antigenic events, "shift," as opposed to incremental "drift" changes in antigenicity. Both an increase in transmissibility and antigenic shift in Omicron led to it readily causing infections in the fully vaccinated and/or previously infected. Omicron's virulence, while reduced relative to the variant of concern it replaced, Delta, is very much premised on the past immune exposure of individuals with a clear signal that boosted vaccination protects from severe disease. Currently, SARS-CoV-2 has proven itself to be a dangerous new human respiratory pathogen with an unpredictable evolutionary capacity, leading to a risk of future variants too great not to ensure all regions of the world are screened by viral genome sequencing, protected through available and affordable vaccines, and have non-punitive strategies in place for detecting and responding to novel variants of concern.


Subject(s)
COVID-19 , Evolution, Molecular , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Humans , Mammals/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
4.
Proc Natl Acad Sci U S A ; 120(12): e2220320120, 2023 03 21.
Article in English | MEDLINE | ID: covidwho-2263575

ABSTRACT

Pre-existing SARS-CoV-2-reactive T cells have been identified in SARS-CoV-2-unexposed individuals, potentially modulating COVID-19 and vaccination outcomes. Here, we provide evidence that functional cross-reactive memory CD4+ T cell immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is established in early childhood, mirroring early seroconversion with seasonal human coronavirus OC43. Humoral and cellular immune responses against OC43 and SARS-CoV-2 were assessed in SARS-CoV-2-unexposed children (paired samples at age two and six) and adults (age 26 to 83). Pre-existing SARS-CoV-2-reactive CD4+ T cell responses targeting spike, nucleocapsid, and membrane were closely linked to the frequency of OC43-specific memory CD4+ T cells in childhood. The functional quality of the cross-reactive memory CD4+ T cell responses targeting SARS-CoV-2 spike, but not nucleocapsid, paralleled OC43-specific T cell responses. OC43-specific antibodies were prevalent already at age two. However, they did not increase further with age, contrasting with the antibody magnitudes against HKU1 (ß-coronavirus), 229E and NL63 (α-coronaviruses), rhinovirus, Epstein-Barr virus (EBV), and influenza virus, which increased after age two. The quality of the memory CD4+ T cell responses peaked at age six and subsequently declined with age, with diminished expression of interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF), and CD38 in late adulthood. Age-dependent qualitative differences in the pre-existing SARS-CoV-2-reactive T cell responses may reflect the ability of the host to control coronavirus infections and respond to vaccination.


Subject(s)
COVID-19 , Epstein-Barr Virus Infections , Child, Preschool , Adult , Child , Humans , Middle Aged , Aged , Aged, 80 and over , SARS-CoV-2 , T-Lymphocytes , Herpesvirus 4, Human , CD4-Positive T-Lymphocytes , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Cross Reactions
5.
Epidemics ; 41: 100654, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2120314

ABSTRACT

During the summers of 2020 and 2021, the number of confirmed cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in Switzerland remained at relatively low levels, but grew steadily over time. It remains unclear to what extent epidemic growth during these periods was a result of the relaxation of local control measures or increased traveling and subsequent importation of cases. A better understanding of the role of cross-border-associated cases (imports) on the local epidemic dynamics will help to inform future surveillance strategies. We analyzed routine surveillance data of confirmed cases of SARS-CoV-2 in Switzerland from 1 June to 30 September 2020 and 2021. We used a stochastic branching process model that accounts for superspreading of SARS-CoV-2 to simulate epidemic trajectories in absence and in presence of imports during summer 2020 and 2021. The Swiss Federal Office of Public Health reported 22,919 and 145,840 confirmed cases of SARS-CoV-2 from 1 June to 30 September 2020 and 2021, respectively. Among cases with known place of exposure, 27% (3,276 of 12,088) and 25% (1,110 of 4,368) reported an exposure abroad in 2020 and 2021, respectively. Without considering the impact of imported cases, the steady growth of confirmed cases during summer periods would be consistent with a value of Re that is significantly above the critical threshold of 1. In contrast, we estimated Re at 0.84 (95% credible interval, CrI: 0.78-0.90) in 2020 and 0.82 (95% CrI: 0.74-0.90) in 2021 when imported cases were taken into account, indicating that the local Re was below the critical threshold of 1 during summer. In Switzerland, cross-border-associated SARS-CoV-2 cases had a considerable impact on the local transmission dynamics and can explain the steady growth of the epidemic during the summers of 2020 and 2021.

6.
PLoS Pathog ; 18(5): e1010515, 2022 05.
Article in English | MEDLINE | ID: covidwho-1875097

ABSTRACT

Worldwide outbreaks of enterovirus D68 (EV-D68) in 2014 and 2016 have caused serious respiratory and neurological disease. We collected samples from several European countries during the 2018 outbreak and determined 53 near full-length genome ('whole genome') sequences. These sequences were combined with 718 whole genome and 1,987 VP1-gene publicly available sequences. In 2018, circulating strains clustered into multiple subgroups in the B3 and A2 subclades, with different phylogenetic origins. Clusters in subclade B3 emerged from strains circulating primarily in the US and Europe in 2016, though some had deeper roots linking to Asian strains, while clusters in A2 traced back to strains detected in East Asia in 2015-2016. In 2018, all sequences from the USA formed a distinct subgroup, containing only three non-US samples. Alongside the varied origins of seasonal strains, we found that diversification of these variants begins up to 18 months prior to the first diagnostic detection during a EV-D68 season. EV-D68 displays strong signs of continuous antigenic evolution and all 2018 A2 strains had novel patterns in the putative neutralizing epitopes in the BC- and DE-loops. The pattern in the BC-loop of the USA B3 subgroup had not been detected on that continent before. Patients with EV-D68 in subclade A2 were significantly older than patients with a B3 subclade virus. In contrast to other subclades, the age distribution of A2 is distinctly bimodal and was found primarily among children and in the elderly. We hypothesize that EV-D68's rapid evolution of surface proteins, extensive diversity, and high rate of geographic mixing could be explained by substantial reinfection of adults. Better understanding of evolution and immunity across diverse viral pathogens, including EV-D68 and SARS-CoV-2, is critical to pandemic preparedness in the future.


Subject(s)
COVID-19 , Enterovirus D, Human , Enterovirus Infections , Respiratory Tract Infections , Adult , Aged , Child , Demography , Disease Outbreaks , Enterovirus D, Human/genetics , Enterovirus Infections/epidemiology , Humans , Phylogeny , SARS-CoV-2
7.
Sci Immunol ; 6(64): eabk0894, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1406593

ABSTRACT

Cross-reactive CD4+ T cells that recognize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are more commonly detected in the peripheral blood of unexposed individuals compared with SARS-CoV-2­reactive CD8+ T cells. However, large numbers of memory CD8+ T cells reside in tissues, feasibly harboring localized SARS-CoV-2­specific immune responses. To test this idea, we performed a comprehensive functional and phenotypic analysis of virus-specific T cells in tonsils, a major lymphoid tissue site in the upper respiratory tract, and matched peripheral blood samples obtained from children and adults before the emergence of COVID-19 (coronavirus disease 2019). We found that SARS-CoV-2­specific memory CD4+ T cells could be found at similar frequencies in the tonsils and peripheral blood in unexposed individuals, whereas functional SARS-CoV-2­specific memory CD8+ T cells were almost only detectable in the tonsils. Tonsillar SARS-CoV-2­specific memory CD8+ T cells displayed a follicular homing and tissue-resident memory phenotype, similar to tonsillar Epstein-Barr virus­specific memory CD8+ T cells, but were functionally less potent than other virus-specific memory CD8+ T cell responses. The presence of preexisting tissue-resident memory CD8+ T cells in unexposed individuals could potentially enable rapid sentinel immune responses against SARS-CoV-2.


Subject(s)
Adenoids/immunology , CD8-Positive T-Lymphocytes/immunology , SARS-CoV-2/immunology , Adenoids/cytology , Adult , Aged , Child, Preschool , Female , Flow Cytometry , Humans , Male , Middle Aged
8.
J Clin Virol ; 136: 104754, 2021 03.
Article in English | MEDLINE | ID: covidwho-1385860

ABSTRACT

OBJECTIVES: The four seasonal coronaviruses 229E, NL63, OC43, and HKU1 are frequent causes of respiratory infections and show annual and seasonal variation. Increased understanding about these patterns could be informative about the epidemiology of SARS-CoV-2. METHODS: Results from PCR diagnostics for the seasonal coronaviruses, and other respiratory viruses, were obtained for 55,190 clinical samples analyzed at the Karolinska University Hospital, Stockholm, Sweden, between 14 September 2009 and 2 April 2020. RESULTS: Seasonal coronaviruses were detected in 2130 samples (3.9 %) and constituted 8.1 % of all virus detections. OC43 was most commonly detected (28.4 % of detections), followed by NL63 (24.0 %), HKU1 (17.6 %), and 229E (15.3 %). The overall fraction of positive samples was similar between seasons, but at species level there were distinct biennial alternating peak seasons for the Alphacoronaviruses, 229E and NL63, and the Betacoronaviruses, OC43 and HKU1, respectively. The Betacoronaviruses peaked earlier in the winter season (Dec-Jan) than the Alphacoronaviruses (Feb-Mar). Coronaviruses were detected across all ages, but diagnostics were more frequently requested for paediatric patients than adults and the elderly. OC43 and 229E incidence was relatively constant across age strata, while that of NL63 and HKU1 decreased with age. CONCLUSIONS: Both the Alphacoronaviruses and Betacoronaviruses showed alternating biennial winter incidence peaks, which suggests some type of immune mediated interaction. Symptomatic reinfections in adults and the elderly appear relatively common. Both findings may be of relevance for the epidemiology of SARS-CoV-2.


Subject(s)
COVID-19/epidemiology , Common Cold/epidemiology , Coronavirus 229E, Human/isolation & purification , Coronavirus NL63, Human/isolation & purification , Coronavirus OC43, Human/isolation & purification , Deltacoronavirus/isolation & purification , Female , Humans , Male , Retrospective Studies , SARS-CoV-2 , Seasons , Sweden
9.
Cell ; 184(19): 4939-4952.e15, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1330684

ABSTRACT

The emergence of the COVID-19 epidemic in the United States (U.S.) went largely undetected due to inadequate testing. New Orleans experienced one of the earliest and fastest accelerating outbreaks, coinciding with Mardi Gras. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large-scale events accelerate transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana had limited diversity compared to other U.S. states and that one introduction of SARS-CoV-2 led to almost all of the early transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras, and the festival dramatically accelerated transmission. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate epidemics.


Subject(s)
COVID-19/epidemiology , Epidemics , SARS-CoV-2/physiology , COVID-19/transmission , Databases as Topic , Disease Outbreaks , Humans , Louisiana/epidemiology , Phylogeny , Risk Factors , SARS-CoV-2/classification , Texas , Travel , United States/epidemiology
10.
Nature ; 595(7869): 707-712, 2021 07.
Article in English | MEDLINE | ID: covidwho-1258587

ABSTRACT

Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3-5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant's success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes.


Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2/isolation & purification , Seasons , COVID-19/diagnosis , COVID-19/epidemiology , Europe/epidemiology , Genotype , Humans , Phylogeny , SARS-CoV-2/genetics , Time Factors , Travel/legislation & jurisprudence , Travel/statistics & numerical data
11.
PLoS Biol ; 19(5): e3001236, 2021 05.
Article in English | MEDLINE | ID: covidwho-1220158

ABSTRACT

With the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants that may increase transmissibility and/or cause escape from immune responses, there is an urgent need for the targeted surveillance of circulating lineages. It was found that the B.1.1.7 (also 501Y.V1) variant, first detected in the United Kingdom, could be serendipitously detected by the Thermo Fisher TaqPath COVID-19 PCR assay because a key deletion in these viruses, spike Δ69-70, would cause a "spike gene target failure" (SGTF) result. However, a SGTF result is not definitive for B.1.1.7, and this assay cannot detect other variants of concern (VOC) that lack spike Δ69-70, such as B.1.351 (also 501Y.V2), detected in South Africa, and P.1 (also 501Y.V3), recently detected in Brazil. We identified a deletion in the ORF1a gene (ORF1a Δ3675-3677) in all 3 variants, which has not yet been widely detected in other SARS-CoV-2 lineages. Using ORF1a Δ3675-3677 as the primary target and spike Δ69-70 to differentiate, we designed and validated an open-source PCR assay to detect SARS-CoV-2 VOC. Our assay can be rapidly deployed in laboratories around the world to enhance surveillance for the local emergence and spread of B.1.1.7, B.1.351, and P.1.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/genetics , DNA Primers , Humans , Multiplex Polymerase Chain Reaction/methods , Mutation , Polyproteins/genetics , Viral Proteins/genetics
12.
Cell ; 184(5): 1127-1132, 2021 03 04.
Article in English | MEDLINE | ID: covidwho-1188379

ABSTRACT

Recent reports suggest that some SARS-CoV-2 genetic variants, such as B.1.1.7, might be more transmissible and are quickly spreading around the world. As the emergence of more transmissible variants could exacerbate the pandemic, we provide public health guidance for increased surveillance and measures to reduce community transmission.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Communicable Disease Control , SARS-CoV-2/genetics , Age Factors , COVID-19/epidemiology , COVID-19/virology , Epidemiological Monitoring , Global Health , Humans , Mandatory Programs , Pandemics , SARS-CoV-2/physiology , Travel/legislation & jurisprudence , United Kingdom/epidemiology , Vulnerable Populations
13.
Microorganisms ; 9(4)2021 Mar 25.
Article in English | MEDLINE | ID: covidwho-1154452

ABSTRACT

The rapid spread of the SARS-CoV-2 lineages B.1.1.7 (N501Y.V1) throughout the UK, B.1.351 (N501Y.V2) in South Africa, and P.1 (B.1.1.28.1; N501Y.V3) in Brazil has led to the definition of variants of concern (VoCs) and recommendations for lineage specific surveillance. In Switzerland, during the last weeks of December 2020, we established a nationwide screening protocol across multiple laboratories, focusing first on epidemiological and microbiological definitions. In January 2021, we validated and implemented an N501Y-specific PCR to rapidly screen for VoCs, which are then confirmed using amplicon sequencing or whole genome sequencing (WGS). A total of 13,387 VoCs have been identified since the detection of the first Swiss case in October 2020, with 4194 being B.1.1.7, 172 B.1.351, and 7 P.1. The remaining 9014 cases of VoCs have been described without further lineage specification. Overall, all diagnostic centers reported a rapid increase of the percentage of detected VOCs, with a range of 6 to 46% between 25 to 31 of January 2021 increasing towards 41 to 82% between 22 to 28 of February. A total of 739 N501Y positive genomes were analysed and show a broad range of introduction events to Switzerland. In this paper, we describe the nationwide coordination and implementation process across laboratories, public health institutions, and researchers, the first results of our N501Y-specific variant screening, and the phylogenetic analysis of all available WGS data in Switzerland, that together identified the early introduction events and subsequent community spreading of the VoCs.

16.
PLoS Pathog ; 17(2): e1009373, 2021 02.
Article in English | MEDLINE | ID: covidwho-1105836

ABSTRACT

The evolutionary mechanisms by which SARS-CoV-2 viruses adapt to mammalian hosts and, potentially, undergo antigenic evolution depend on the ways genetic variation is generated and selected within and between individual hosts. Using domestic cats as a model, we show that SARS-CoV-2 consensus sequences remain largely unchanged over time within hosts, while dynamic sub-consensus diversity reveals processes of genetic drift and weak purifying selection. We further identify a notable variant at amino acid position 655 in Spike (H655Y), which was previously shown to confer escape from human monoclonal antibodies. This variant arises rapidly and persists at intermediate frequencies in index cats. It also becomes fixed following transmission in two of three pairs. These dynamics suggest this site may be under positive selection in this system and illustrate how a variant can quickly arise and become fixed in parallel across multiple transmission pairs. Transmission of SARS-CoV-2 in cats involved a narrow bottleneck, with new infections founded by fewer than ten viruses. In RNA virus evolution, stochastic processes like narrow transmission bottlenecks and genetic drift typically act to constrain the overall pace of adaptive evolution. Our data suggest that here, positive selection in index cats followed by a narrow transmission bottleneck may have instead accelerated the fixation of S H655Y, a potentially beneficial SARS-CoV-2 variant. Overall, our study suggests species- and context-specific adaptations are likely to continue to emerge. This underscores the importance of continued genomic surveillance for new SARS-CoV-2 variants as well as heightened scrutiny for signatures of SARS-CoV-2 positive selection in humans and mammalian model systems.


Subject(s)
COVID-19/veterinary , Cat Diseases/virology , SARS-CoV-2/physiology , Adaptation, Biological , Animals , Biological Evolution , COVID-19/transmission , COVID-19/virology , Cats , Evolution, Molecular , Genetic Variation , Humans , Phylogeny , Selection, Genetic
17.
medRxiv ; 2021 Mar 24.
Article in English | MEDLINE | ID: covidwho-955723

ABSTRACT

Following its emergence in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic resulting in unprecedented efforts to reduce transmission and develop therapies and vaccines (WHO Emergency Committee, 2020; Zhu et al., 2020). Rapidly generated viral genome sequences have allowed the spread of the virus to be tracked via phylogenetic analysis (Worobey et al., 2020; Hadfield et al., 2018; Pybus et al., 2020). While the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced, allowing continent-specific variants to emerge. However, within Europe travel resumed in the summer of 2020, and the impact of this travel on the epidemic is not well understood. Here we report on a novel SARS-CoV-2 variant, 20E (EU1), that emerged in Spain in early summer, and subsequently spread to multiple locations in Europe. We find no evidence of increased transmissibility of this variant, but instead demonstrate how rising incidence in Spain, resumption of travel across Europe, and lack of effective screening and containment may explain the variant's success. Despite travel restrictions and quarantine requirements, we estimate 20E (EU1) was introduced hundreds of times to countries across Europe by summertime travellers, likely undermining local efforts to keep SARS-CoV-2 cases low. Our results demonstrate how a variant can rapidly become dominant even in absence of a substantial transmission advantage in favorable epidemiological settings. Genomic surveillance is critical to understanding how travel can impact SARS-CoV-2 transmission, and thus for informing future containment strategies as travel resumes.

19.
Science ; 370(6516): 571-575, 2020 10 30.
Article in English | MEDLINE | ID: covidwho-760213

ABSTRACT

After its emergence in Wuhan, China, in late November or early December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus rapidly spread globally. Genome sequencing of SARS-CoV-2 allows the reconstruction of its transmission history, although this is contingent on sampling. We analyzed 453 SARS-CoV-2 genomes collected between 20 February and 15 March 2020 from infected patients in Washington state in the United States. We find that most SARS-CoV-2 infections sampled during this time derive from a single introduction in late January or early February 2020, which subsequently spread locally before active community surveillance was implemented.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Genome, Viral , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Bayes Theorem , COVID-19 , Humans , Likelihood Functions , Pandemics , Phylogeny , SARS-CoV-2 , Washington/epidemiology
20.
Euro Surveill ; 25(32)2020 Aug.
Article in English | MEDLINE | ID: covidwho-721443

ABSTRACT

We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus/genetics , Genome, Viral/genetics , Pandemics , Pneumonia, Viral/epidemiology , RNA, Viral/analysis , RNA-Dependent RNA Polymerase/genetics , Base Sequence , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus/isolation & purification , Coronavirus Infections/virology , Europe/epidemiology , Humans , Phylogeography , Pneumonia, Viral/virology , RNA, Viral/genetics , SARS-CoV-2 , Severe Acute Respiratory Syndrome , Spatio-Temporal Analysis , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL