Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Lancet Respir Med ; 9(9): 957-968, 2021 09.
Article in English | MEDLINE | ID: covidwho-1275790

ABSTRACT

BACKGROUND: The major complication of COVID-19 is hypoxaemic respiratory failure from capillary leak and alveolar oedema. Experimental and early clinical data suggest that the tyrosine-kinase inhibitor imatinib reverses pulmonary capillary leak. METHODS: This randomised, double-blind, placebo-controlled, clinical trial was done at 13 academic and non-academic teaching hospitals in the Netherlands. Hospitalised patients (aged ≥18 years) with COVID-19, as confirmed by an RT-PCR test for SARS-CoV-2, requiring supplemental oxygen to maintain a peripheral oxygen saturation of greater than 94% were eligible. Patients were excluded if they had severe pre-existing pulmonary disease, had pre-existing heart failure, had undergone active treatment of a haematological or non-haematological malignancy in the previous 12 months, had cytopenia, or were receiving concomitant treatment with medication known to strongly interact with imatinib. Patients were randomly assigned (1:1) to receive either oral imatinib, given as a loading dose of 800 mg on day 0 followed by 400 mg daily on days 1-9, or placebo. Randomisation was done with a computer-based clinical data management platform with variable block sizes (containing two, four, or six patients), stratified by study site. The primary outcome was time to discontinuation of mechanical ventilation and supplemental oxygen for more than 48 consecutive hours, while being alive during a 28-day period. Secondary outcomes included safety, mortality at 28 days, and the need for invasive mechanical ventilation. All efficacy and safety analyses were done in all randomised patients who had received at least one dose of study medication (modified intention-to-treat population). This study is registered with the EU Clinical Trials Register (EudraCT 2020-001236-10). FINDINGS: Between March 31, 2020, and Jan 4, 2021, 805 patients were screened, of whom 400 were eligible and randomly assigned to the imatinib group (n=204) or the placebo group (n=196). A total of 385 (96%) patients (median age 64 years [IQR 56-73]) received at least one dose of study medication and were included in the modified intention-to-treat population. Time to discontinuation of ventilation and supplemental oxygen for more than 48 h was not significantly different between the two groups (unadjusted hazard ratio [HR] 0·95 [95% CI 0·76-1·20]). At day 28, 15 (8%) of 197 patients had died in the imatinib group compared with 27 (14%) of 188 patients in the placebo group (unadjusted HR 0·51 [0·27-0·95]). After adjusting for baseline imbalances between the two groups (sex, obesity, diabetes, and cardiovascular disease) the HR for mortality was 0·52 (95% CI 0·26-1·05). The HR for mechanical ventilation in the imatinib group compared with the placebo group was 1·07 (0·63-1·80; p=0·81). The median duration of invasive mechanical ventilation was 7 days (IQR 3-13) in the imatinib group compared with 12 days (6-20) in the placebo group (p=0·0080). 91 (46%) of 197 patients in the imatinib group and 82 (44%) of 188 patients in the placebo group had at least one grade 3 or higher adverse event. The safety evaluation revealed no imatinib-associated adverse events. INTERPRETATION: The study failed to meet its primary outcome, as imatinib did not reduce the time to discontinuation of ventilation and supplemental oxygen for more than 48 consecutive hours in patients with COVID-19 requiring supplemental oxygen. The observed effects on survival (although attenuated after adjustment for baseline imbalances) and duration of mechanical ventilation suggest that imatinib might confer clinical benefit in hospitalised patients with COVID-19, but further studies are required to validate these findings. FUNDING: Amsterdam Medical Center Foundation, Nederlandse Organisatie voor Wetenschappelijk Onderzoek/ZonMW, and the European Union Innovative Medicines Initiative 2.


Subject(s)
COVID-19/therapy , Imatinib Mesylate/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Respiration, Artificial/statistics & numerical data , Respiratory Insufficiency/therapy , Aged , COVID-19/complications , COVID-19/diagnosis , COVID-19/virology , Capillary Permeability/drug effects , Combined Modality Therapy/adverse effects , Combined Modality Therapy/methods , Double-Blind Method , Female , Humans , Imatinib Mesylate/adverse effects , Male , Middle Aged , Netherlands , Oxygen/administration & dosage , Placebos/administration & dosage , Placebos/adverse effects , Protein Kinase Inhibitors/adverse effects , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/virology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Time Factors , Treatment Outcome
2.
J Am Coll Emerg Physicians Open ; 2(3): e12429, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1220440

ABSTRACT

BACKGROUND: Assessing the extent of lung involvement is important for the triage and care of COVID-19 pneumonia. We sought to determine the utility of point-of-care ultrasound (POCUS) for characterizing lung involvement and, thereby, clinical risk determination in COVID-19 pneumonia. METHODS: This multicenter, prospective, observational study included patients with COVID-19 who received 12-zone lung ultrasound and chest computed tomography (CT) scanning in the emergency department (ED). We defined lung disease severity using the lung ultrasound score (LUS) and chest CT severity score (CTSS). We assessed the association between the LUS and poor outcome (ICU admission or 30-day all-cause mortality). We also assessed the association between the LUS and hospital length of stay. We examined the ability of the LUS to differentiate between disease severity groups. Lastly, we estimated the correlation between the LUS and CTSS and the interrater agreement for the LUS. We handled missing data by multiple imputation with chained equations and predictive mean matching. RESULTS: We included 114 patients treated between March 19, 2020, and May 4, 2020. An LUS ≥12 was associated with a poor outcome within 30 days (hazard ratio [HR], 5.59; 95% confidence interval [CI], 1.26-24.80; P = 0.02). Admission duration was shorter in patients with an LUS <12 (adjusted HR, 2.24; 95% CI, 1.47-3.40; P < 0.001). Mean LUS differed between disease severity groups: no admission, 6.3 (standard deviation [SD], 4.4); hospital/ward, 13.1 (SD, 6.4); and ICU, 18.0 (SD, 5.0). The LUS was able to discriminate between ED discharge and hospital admission excellently, with an area under the curve of 0.83 (95% CI, 0.75-0.91). Interrater agreement for the LUS was strong: κ = 0.88 (95% CI, 0.77-0.95). Correlation between the LUS and CTSS was strong: κ = 0.60 (95% CI, 0.48-0.71). CONCLUSIONS: We showed that baseline lung ultrasound - is associated with poor outcomes, admission duration, and disease severity. The LUS also correlates well with CTSS. Point-of-care lung ultrasound may aid the risk stratification and triage of patients with COVID-19 at the ED.

3.
PLoS One ; 16(3): e0249231, 2021.
Article in English | MEDLINE | ID: covidwho-1154085

ABSTRACT

BACKGROUND: To date, survival data on risk factors for COVID-19 mortality in western Europe is limited, and none of the published survival studies have used a competing risk approach. This study aims to identify risk factors for in-hospital mortality in COVID-19 patients in the Netherlands, considering recovery as a competing risk. METHODS: In this observational multicenter cohort study we included adults with PCR-confirmed SARS-CoV-2 infection that were admitted to one of five hospitals in the Netherlands (March to May 2020). We performed a competing risk survival analysis, presenting cause-specific hazard ratios (HRCS) for the effect of preselected factors on the absolute risk of death and recovery. RESULTS: 1,006 patients were included (63.9% male; median age 69 years, IQR: 58-77). Patients were hospitalized for a median duration of 6 days (IQR: 3-13); 243 (24.6%) of them died, 689 (69.9%) recovered, and 74 (7.4%) were censored. Patients with higher age (HRCS 1.10, 95% CI 1.08-1.12), immunocompromised state (HRCS 1.46, 95% CI 1.08-1.98), who used anticoagulants or antiplatelet medication (HRCS 1.38, 95% CI 1.01-1.88), with higher modified early warning score (MEWS) (HRCS 1.09, 95% CI 1.01-1.18), and higher blood LDH at time of admission (HRCS 6.68, 95% CI 1.95-22.8) had increased risk of death, whereas fever (HRCS 0.70, 95% CI 0.52-0.95) decreased risk of death. We found no increased mortality risk in male patients, high BMI or diabetes. CONCLUSION: Our competing risk survival analysis confirms specific risk factors for COVID-19 mortality in a the Netherlands, which can be used for prediction research, more intense in-hospital monitoring or prioritizing particular patients for new treatments or vaccination.


Subject(s)
COVID-19/diagnosis , Hospital Mortality , Aged , Anticoagulants/therapeutic use , Body Mass Index , COVID-19/mortality , COVID-19/virology , Cohort Studies , Diabetes Complications , Female , Humans , Immunocompromised Host , L-Lactate Dehydrogenase/biosynthesis , Length of Stay , Male , Middle Aged , Netherlands , Proportional Hazards Models , RNA, Viral/analysis , Risk Factors , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Survival Analysis
4.
PLoS One ; 16(3): e0248713, 2021.
Article in English | MEDLINE | ID: covidwho-1140537

ABSTRACT

OBJECTIVE: To describe clinical characteristics, disease course and outcomes in a large and well-documented cohort of hospitalized COVID-19 patients in the Netherlands. METHODS: We conducted a multicentre retrospective cohort study in The Netherlands including 952 of 1183 consecutively hospitalized patients that were admitted to participating hospitals between March 2nd, 2020, and May 22nd, 2020. Clinical characteristics and laboratory parameters upon admission and during hospitalization were collected until July 1st. RESULTS: The median age was 69 years (IQR 58-77 years) and 605 (63.6%) were male. Cardiovascular disease was present in 558 (58.6%) patients. The median time of onset of symptoms prior to hospitalization was 7 days (IQR 5-10). A non ICU admission policy was applicable in 312 (32.8%) patients and in 165 (56.3%) of the severely ill patients admitted to the ward. At admission and during hospitalization, severely ill patients had higher values of CRP, LDH, ferritin and D-dimer with higher neutrophil counts and lower lymphocyte counts. Overall in-hospital mortality was 25.1% and 183 (19.1%) patients were admitted to ICU, of whom 56 (30.6%) died. Patients aged ≥70 years had high mortality, both at the ward (52.4%) and ICU (47.4%). The median length of ICU stay was 8 days longer in patients aged ≥70 years compared to patients aged ≤60 years. CONCLUSION: Hospitalized COVID-19 patients aged ≥70 years had high mortality and longer ICU stay compared to patients aged ≤60 years. These findings in combination with the patient burden of an ICU admission and possible long term complications after discharge should encourage us to further investigate the benefit of ICU admission in elderly and fragile COVID-19-patients.


Subject(s)
COVID-19/blood , COVID-19/epidemiology , Age Factors , Aged , COVID-19/diagnosis , Critical Illness/epidemiology , Female , Hospital Mortality , Hospitalization , Humans , Intensive Care Units , Length of Stay , Male , Middle Aged , Netherlands/epidemiology , Retrospective Studies , SARS-CoV-2/isolation & purification
6.
J Infect Dis ; 223(8): 1322-1333, 2021 04 23.
Article in English | MEDLINE | ID: covidwho-1057852

ABSTRACT

The clinical spectrum of COVID-19 varies and the differences in host response characterizing this variation have not been fully elucidated. COVID-19 disease severity correlates with an excessive proinflammatory immune response and profound lymphopenia. Inflammatory responses according to disease severity were explored by plasma cytokine measurements and proteomics analysis in 147 COVID-19 patients. Furthermore, peripheral blood mononuclear cell cytokine production assays and whole blood flow cytometry were performed. Results confirm a hyperinflammatory innate immune state, while highlighting hepatocyte growth factor and stem cell factor as potential biomarkers for disease severity. Clustering analysis revealed no specific inflammatory endotypes in COVID-19 patients. Functional assays revealed abrogated adaptive cytokine production (interferon-γ, interleukin-17, and interleukin-22) and prominent T-cell exhaustion in critically ill patients, whereas innate immune responses were intact or hyperresponsive. Collectively, this extensive analysis provides a comprehensive insight into the pathobiology of severe to critical COVID-19 and highlights potential biomarkers of disease severity.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Immunity, Innate/immunology , Aged , Biomarkers/blood , COVID-19/blood , COVID-19/virology , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Cytokines/immunology , Female , Humans , Inflammation/blood , Inflammation/immunology , Inflammation/virology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Lymphopenia/blood , Lymphopenia/immunology , Lymphopenia/virology , Male , Middle Aged , SARS-CoV-2/immunology , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL