Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Year range
PubMed; 2022.
Preprint in English | PubMed | ID: ppcovidwho-338328


BACKGROUND: Mechanisms underlying persistent cardiopulmonary symptoms following SARS-CoV-2 infection (post-acute sequelae of COVID-19 "PASC" or "Long COVID") remain unclear. The purpose of this study was to elucidate the pathophysiology of cardiopulmonary PASC using multimodality cardiovascular imaging including cardiopulmonary exercise testing (CPET), cardiac magnetic resonance imaging (CMR) and ambulatory rhythm monitoring. METHODS: We performed CMR, CPET, and ambulatory rhythm monitoring among adults > 1 year after PCR-confirmed SARS-CoV-2 infection in the UCSF Long-Term Impact of Infection with Novel Coronavirus cohort (LIINC;NCT04362150 ) and correlated findings with previously measured biomarkers. We used logistic regression to estimate associations with PASC symptoms (dyspnea, chest pain, palpitations, and fatigue) adjusted for confounders and linear regression to estimate differences between those with and without symptoms adjusted for confounders. RESULTS: Out of 120 participants in the cohort, 46 participants (unselected for symptom status) had at least one advanced cardiac test performed at median 17 months following initial SARS-CoV-2 infection. Median age was 52 (IQR 42-61), 18 (39%) were female, and 6 (13%) were hospitalized for severe acute infection. On CMR (n=39), higher extracellular volume was associated with symptoms, but no evidence of late-gadolinium enhancement or differences in T1 or T2 mapping were demonstrated. We did not find arrhythmias on ambulatory monitoring. In contrast, on CPET (n=39), 13/23 (57%) with cardiopulmonary symptoms or fatigue had reduced exercise capacity (peak VO 2 <85% predicted) compared to 2/16 (13%) without symptoms (p=0.008). The adjusted difference in peak VO 2 was 5.9 ml/kg/min lower (-9.6 to -2.3;p=0.002) or -21% predicted (-35 to -7;p=0.006) among those with symptoms. Chronotropic incompetence was the primary abnormality among 9/15 (60%) with reduced peak VO 2 . Adjusted heart rate reserve <80% was associated with reduced exercise capacity (OR 15.6, 95%CI 1.30-187;p=0.03). Inflammatory markers (hsCRP, IL-6, TNF-alpha) and SARS-CoV-2 antibody levels measured early in PASC were negatively correlated with peak VO 2 more than 1 year later. CONCLUSIONS: Cardiopulmonary symptoms and elevated inflammatory markers present early in PASC are associated with objectively reduced exercise capacity measured on cardiopulmonary exercise testing more than 1 year following COVID-19. Chronotropic incompetence may explain reduced exercise capacity among some individuals with PASC. Clinical Perspective: What is New?Elevated inflammatory markers in early post-acute COVID-19 are associated with reduced exercise capacity more than 1 year later.Impaired chronotropic response to exercise is associated with reduced exercise capacity and cardiopulmonary symptoms more than 1 year after SARS-CoV-2 infection.Findings on ambulatory rhythm monitoring point to perturbed autonomic function, while cardiac MRI findings argue against myocardial dysfunction and myocarditis. Clinical Implications: Cardiopulmonary testing to identify etiologies of persistent symptoms in post-acute sequalae of COVID-19 or "Long COVID" should be performed in a manner that allows for assessment of heart rate response to exercise. Therapeutic trials of anti-inflammatory and exercise strategies in PASC are urgently needed and should include assessment of symptoms and objective testing with cardiopulmonary exercise testing.

PUBMED; 2021.
Preprint in English | PUBMED | ID: ppcovidwho-293448


Serosurveys are a key resource for measuring SARS-CoV-2 cumulative incidence. A growing body of evidence suggests that asymptomatic and mild infections (together making up over 95% of all infections) are associated with lower antibody titers than severe infections. Antibody levels also peak a few weeks after infection and decay gradually. We developed a statistical approach to produce adjusted estimates of seroprevalence from raw serosurvey results that account for these sources of spectrum bias. We incorporate data on antibody responses on multiple assays from a post-infection longitudinal cohort, along with epidemic time series to account for the timing of a serosurvey relative to how recently individuals may have been infected. We applied this method to produce adjusted seroprevalence estimates from five large-scale SARS-CoV-2 serosurveys across different settings and study designs. We identify substantial differences between reported and adjusted estimates of over two-fold in the results of some surveys, and provide a tool for practitioners to generate adjusted estimates with pre-set or custom parameter values. While unprecedented efforts have been launched to generate SARS-CoV-2 seroprevalence estimates over this past year, interpretation of results from these studies requires properly accounting for both population-level epidemiologic context and individual-level immune dynamics.

PubMed; 2020.
Preprint in English | PubMed | ID: ppcovidwho-6278


During virus infection B cells are critical for the production of antibodies and protective immunity. Establishment of a diverse antibody repertoire occurs by rearrangement of germline DNA at the immunoglobulin heavy and light chain loci to encode the membrane-bound form of antibodies, the B cell antigen receptor. Little is known about the B cells and antigen receptors stimulated by the novel human coronavirus SARS-CoV-2. Here we show that the human B cell compartment in patients with diagnostically confirmed SARS-CoV-2 and clinical COVID-19 is rapidly altered with the early recruitment of B cells expressing a limited subset of V genes, and extensive activation of IgG and IgA subclasses without significant somatic mutation. We detect expansion of B cell clones as well as convergent antibodies with highly similar sequences across SARS-CoV-2 patients, highlighting stereotyped naive responses to this virus. A shared convergent B cell clonotype in SARS-CoV-2 infected patients was previously seen in patients with SARS. These findings offer molecular insights into shared features of human B cell responses to SARS-CoV-2 and other zoonotic spillover coronaviruses.