Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Med Internet Res ; 23(10): e31400, 2021 10 11.
Article in English | MEDLINE | ID: covidwho-1463405

ABSTRACT

BACKGROUND: Many countries have experienced 2 predominant waves of COVID-19-related hospitalizations. Comparing the clinical trajectories of patients hospitalized in separate waves of the pandemic enables further understanding of the evolving epidemiology, pathophysiology, and health care dynamics of the COVID-19 pandemic. OBJECTIVE: In this retrospective cohort study, we analyzed electronic health record (EHR) data from patients with SARS-CoV-2 infections hospitalized in participating health care systems representing 315 hospitals across 6 countries. We compared hospitalization rates, severe COVID-19 risk, and mean laboratory values between patients hospitalized during the first and second waves of the pandemic. METHODS: Using a federated approach, each participating health care system extracted patient-level clinical data on their first and second wave cohorts and submitted aggregated data to the central site. Data quality control steps were adopted at the central site to correct for implausible values and harmonize units. Statistical analyses were performed by computing individual health care system effect sizes and synthesizing these using random effect meta-analyses to account for heterogeneity. We focused the laboratory analysis on C-reactive protein (CRP), ferritin, fibrinogen, procalcitonin, D-dimer, and creatinine based on their reported associations with severe COVID-19. RESULTS: Data were available for 79,613 patients, of which 32,467 were hospitalized in the first wave and 47,146 in the second wave. The prevalence of male patients and patients aged 50 to 69 years decreased significantly between the first and second waves. Patients hospitalized in the second wave had a 9.9% reduction in the risk of severe COVID-19 compared to patients hospitalized in the first wave (95% CI 8.5%-11.3%). Demographic subgroup analyses indicated that patients aged 26 to 49 years and 50 to 69 years; male and female patients; and black patients had significantly lower risk for severe disease in the second wave than in the first wave. At admission, the mean values of CRP were significantly lower in the second wave than in the first wave. On the seventh hospital day, the mean values of CRP, ferritin, fibrinogen, and procalcitonin were significantly lower in the second wave than in the first wave. In general, countries exhibited variable changes in laboratory testing rates from the first to the second wave. At admission, there was a significantly higher testing rate for D-dimer in France, Germany, and Spain. CONCLUSIONS: Patients hospitalized in the second wave were at significantly lower risk for severe COVID-19. This corresponded to mean laboratory values in the second wave that were more likely to be in typical physiological ranges on the seventh hospital day compared to the first wave. Our federated approach demonstrated the feasibility and power of harmonizing heterogeneous EHR data from multiple international health care systems to rapidly conduct large-scale studies to characterize how COVID-19 clinical trajectories evolve.


Subject(s)
COVID-19 , Pandemics , Adult , Aged , Female , Hospitalization , Hospitals , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2
2.
Yearb Med Inform ; 30(1): 69-74, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1392943

ABSTRACT

OBJECTIVE: To summarize significant research contributions on managing pandemics with health informatics published in 2020. METHODS: An extensive search using PubMed and Scopus was conducted to identify peer-reviewed articles published in 2020 that examined health informatics systems used during the global COVID-19 pandemic. The selection process comprised three steps: 1) 15 candidate best papers were first selected by the two section editors; 2) external reviewers from internationally renowned research teams reviewed each candidate best paper; and 3) the final selection of three best papers was conducted by the editorial committee of the International Medical Informatics Association (IMIA) Yearbook. RESULTS: Selected best papers represent the important and diverse ways that health informatics supported clinical and public health responses to the global COVID-19 pandemic. Selected papers represent four groups of papers: 1) Use of analytics to screen, triage, and manage patients; 2) Use of telehealth and remote monitoring to manage patients and populations; 3) Use of EHR systems and administrative systems to manage internal operations of a hospital or health system; and 4) Use of informatics methods and systems by public health authorities to capture, store, manage, and visualize population-level data and information. CONCLUSION: Health informatics played a critical role in managing patients and populations during the COVID-19 pandemic. Health care and public health organizations both leveraged available information systems and standards to rapidly identify cases, triage infected individuals, and monitor population trends. The selected best papers represent a fraction of the body of knowledge stemming from COVID-19, most of which is focused on pandemic response. Future work will be needed to help the world recover from the pandemic and strengthen the health information infrastructure in preparation for the next pandemic.


Subject(s)
COVID-19 , Medical Informatics , COVID-19/epidemiology , COVID-19/therapy , Humans , Medical Records Systems, Computerized , Public Health Practice , Telemedicine
3.
Methods Inf Med ; 60(1-02): 32-48, 2021 May.
Article in English | MEDLINE | ID: covidwho-1331415

ABSTRACT

BACKGROUND: The electronic health record (EHR) has become increasingly ubiquitous. At the same time, health professionals have been turning to this resource for access to data that is needed for the delivery of health care and for clinical research. There is little doubt that the EHR has made both of these functions easier than earlier days when we relied on paper-based clinical records. Coupled with modern database and data warehouse systems, high-speed networks, and the ability to share clinical data with others are large number of challenges that arguably limit the optimal use of the EHR OBJECTIVES: Our goal was to provide an exhaustive reference for those who use the EHR in clinical and research contexts, but also for health information systems professionals as they design, implement, and maintain EHR systems. METHODS: This study includes a panel of 24 biomedical informatics researchers, information technology professionals, and clinicians, all of whom have extensive experience in design, implementation, and maintenance of EHR systems, or in using the EHR as clinicians or researchers. All members of the panel are affiliated with Penn Medicine at the University of Pennsylvania and have experience with a variety of different EHR platforms and systems and how they have evolved over time. RESULTS: Each of the authors has shared their knowledge and experience in using the EHR in a suite of 20 short essays, each representing a specific challenge and classified according to a functional hierarchy of interlocking facets such as usability and usefulness, data quality, standards, governance, data integration, clinical care, and clinical research. CONCLUSION: We provide here a set of perspectives on the challenges posed by the EHR to clinical and research users.


Subject(s)
Electronic Health Records , Health Information Systems , Delivery of Health Care , Health Personnel , Humans
4.
BioData Min ; 13: 3, 2020.
Article in English | MEDLINE | ID: covidwho-1145447

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has had a significant impact on population health and wellbeing. Biomedical informatics is central to COVID-19 research efforts and for the delivery of healthcare for COVID-19 patients. Critical to this effort is the participation of informaticians who typically work on other basic science or clinical problems. The goal of this editorial is to highlight some examples of COVID-19 research areas that could benefit from informatics expertise. Each research idea summarizes the COVID-19 application area, followed by an informatics methodology, approach, or technology that could make a contribution. It is our hope that this piece will motivate and make it easy for some informaticians to adopt COVID-19 research projects.

5.
J Med Internet Res ; 23(3): e22219, 2021 03 02.
Article in English | MEDLINE | ID: covidwho-1088863

ABSTRACT

Coincident with the tsunami of COVID-19-related publications, there has been a surge of studies using real-world data, including those obtained from the electronic health record (EHR). Unfortunately, several of these high-profile publications were retracted because of concerns regarding the soundness and quality of the studies and the EHR data they purported to analyze. These retractions highlight that although a small community of EHR informatics experts can readily identify strengths and flaws in EHR-derived studies, many medical editorial teams and otherwise sophisticated medical readers lack the framework to fully critically appraise these studies. In addition, conventional statistical analyses cannot overcome the need for an understanding of the opportunities and limitations of EHR-derived studies. We distill here from the broader informatics literature six key considerations that are crucial for appraising studies utilizing EHR data: data completeness, data collection and handling (eg, transformation), data type (ie, codified, textual), robustness of methods against EHR variability (within and across institutions, countries, and time), transparency of data and analytic code, and the multidisciplinary approach. These considerations will inform researchers, clinicians, and other stakeholders as to the recommended best practices in reviewing manuscripts, grants, and other outputs from EHR-data derived studies, and thereby promote and foster rigor, quality, and reliability of this rapidly growing field.


Subject(s)
COVID-19/epidemiology , Data Collection/methods , Electronic Health Records , Data Collection/standards , Humans , Peer Review, Research/standards , Publishing/standards , Reproducibility of Results , SARS-CoV-2/isolation & purification
6.
BioData Mining 2020 13:1 ; 13(1):Jan-16, 2020.
Article | WHO COVID | ID: covidwho-245243

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has had a significant impact on population health and wellbeing. Biomedical informatics is central to COVID-19 research efforts and for the delivery of healthcare for COVID-19 patients. Critical to this effort is the participation of informaticians who typically work on other basic science or clinical problems. The goal of this editorial is to highlight some examples of COVID-19 research areas that could benefit from informatics expertise. Each research idea summarizes the COVID-19 application area, followed by an informatics methodology, approach, or technology that could make a contribution. It is our hope that this piece will motivate and make it easy for some informaticians to adopt COVID-19 research projects.

SELECTION OF CITATIONS
SEARCH DETAIL
...