Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.08.22282084

ABSTRACT

Background: Since the beginning of the COVID-19 pandemic veterinary diagnostic laboratories have tested diagnostic samples for SARS-CoV-2 not only in animals, but in over five million human samples. An evaluation of the performance of those laboratories is needed using blinded test samples to ensure that laboratories report reliable data to the public. This interlaboratory comparison exercise (ILC3) builds on two prior exercises to assess whether veterinary diagnostic laboratories can detect Delta and Omicron variants spiked in canine nasal matrix or viral transport medium. Methods: Inactivated Delta variant at levels of 25 to 1,000 copies per 50 microliters of nasal matrix were prepared for participants by the ILC organizer, an independent laboratory, for blinded analysis. Omicron variant at 1,000 copies per 50 microliters of transport medium was also included. Feline infectious peritonitis virus (FIPV) RNA was used as a confounder for specificity assessment. A total of 14 test samples were prepared for each participant. Participants used their routine diagnostic procedures for RNA extraction and real-time RT-PCR. Results were analyzed according to International Organization for Standardization (ISO) 16140 - 2:2016. Results: The overall results showed 93% detection for Delta and 97% for Omicron at 1,000 copies per 50 microliters (22-200 copies per reaction). The overall specificity was 97% for blank samples and 100% for blank samples with FIPV. No differences in Ct values were significant for samples with the same virus levels between N1 and N2 markers, nor between the two variants. Conclusions: The results indicated that all ILC3 participants were able to detect both Delta and Omicron variants. The canine nasal matrix did not significantly affect SARS-CoV-2 detection.

2.
Viruses ; 14(10)2022 10 04.
Article in English | MEDLINE | ID: covidwho-2066555

ABSTRACT

A preliminary vaccination trial against the emergent pathogen, SARS-CoV-2, was completed in captive black-footed ferrets (Mustela nigripes; BFF) to assess safety, immunogenicity, and anti-viral efficacy. Vaccination and boosting of 15 BFF with purified SARS-CoV-2 S1 subunit protein produced a nearly 150-fold increase in mean antibody titers compared to pre-vaccination titers. Serum antibody responses were highest in young animals, but in all vaccinees, antibody response declined rapidly. Anti-viral activity from vaccinated and unvaccinated BFF was determined in vitro, as well as in vivo with a passive serum transfer study in mice. Transgenic mice that received BFF serum transfers and were subsequently challenged with SARS-CoV-2 had lung viral loads that negatively correlated (p < 0.05) with the BFF serum titer received. Lastly, an experimental challenge study in a small group of BFF was completed to test susceptibility to SARS-CoV-2. Despite viral replication and shedding in the upper respiratory tract for up to 7 days post-challenge, no clinical disease was observed in either vaccinated or naive animals. The lack of morbidity or mortality observed indicates SARS-CoV-2 is unlikely to affect wild BFF populations, but infected captive animals pose a potential risk, albeit low, for humans and other animals.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Viral , Antiviral Agents , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Ferrets , SARS-CoV-2
3.
J Vet Diagn Invest ; 34(5): 825-834, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2002060

ABSTRACT

The COVID-19 pandemic presents a continued public health challenge. Veterinary diagnostic laboratories in the United States use RT-rtPCR for animal testing, and many laboratories are certified for testing human samples; hence, ensuring that laboratories have sensitive and specific SARS-CoV2 testing methods is a critical component of the pandemic response. In 2020, the FDA Veterinary Laboratory Investigation and Response Network (Vet-LIRN) led an interlaboratory comparison (ILC1) to help laboratories evaluate their existing RT-rtPCR methods for detecting SARS-CoV2. All participating laboratories were able to detect the viral RNA spiked in buffer and PrimeStore molecular transport medium (MTM). With ILC2, Vet-LIRN extended ILC1 by evaluating analytical sensitivity and specificity of the methods used by participating laboratories to detect 3 SARS-CoV2 variants (B.1; B.1.1.7 [Alpha]; B.1.351 [Beta]) at various copy levels. We analyzed 57 sets of results from 45 laboratories qualitatively and quantitatively according to the principles of ISO 16140-2:2016. More than 95% of analysts detected the SARS-CoV2 RNA in MTM at ≥500 copies for all 3 variants. In addition, for nucleocapsid markers N1 and N2, 81% and 92% of the analysts detected ≤20 copies in the assays, respectively. The analytical specificity of the evaluated methods was >99%. Participating laboratories were able to assess their current method performance, identify possible limitations, and recognize method strengths as part of a continuous learning environment to support the critical need for the reliable diagnosis of COVID-19 in potentially infected animals and humans.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/diagnosis , COVID-19/veterinary , COVID-19 Testing , Humans , Immunity, Innate , Laboratories , Lymphocytes , Pandemics/veterinary , RNA, Viral/analysis , SARS-CoV-2/genetics , Sensitivity and Specificity , United States/epidemiology
4.
International Journal for Technology in Mathematics Education ; 29(1):59-62, 2022.
Article in English | Web of Science | ID: covidwho-1896506

ABSTRACT

The onset of COVID-19, along with its various mutations, has played havoc with many activities, not the least of which is education. For the majority of 2020 and 2021 in Australia, much of the teaching in both schools and universities was undertaken online, leading to a re-think of how learning and teaching might look in the future. This paper examines some of the challenges of remote learning, along with some of the unexpected benefits. Of particular interest is assessment, especially in mathematics-based subjects, and how a fair evaluation may be made of the students.

5.
American Journal of Respiratory and Critical Care Medicine ; 205:2, 2022.
Article in English | English Web of Science | ID: covidwho-1880347
6.
Transbound Emerg Dis ; 68(6): 3443-3452, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1526424

ABSTRACT

The recently emerged novel coronavirus, SARS-CoV-2, is phylogenetically related to bat coronaviruses (CoVs), specifically SARS-related CoVs from the Eurasian bat family Rhinolophidae. As this human pandemic virus has spread across the world, the potential impacts of SARS-CoV-2 on native North American bat populations are unknown, as is the ability of North American bats to serve as reservoirs or intermediate hosts able to transmit the virus to humans or to other animal species. To help determine the impacts of the pandemic virus on North American bat populations, we experimentally challenged big brown bats (Eptesicus fuscus) with SARS-CoV-2 under BSL-3 conditions. We inoculated the bats both oropharyngeally and nasally, and over the ensuing three weeks, we measured infectivity, pathology, virus concentrations in tissues, oral and rectal virus excretion, virus transmission, and clinical signs of disease. We found no evidence of SARS-CoV-2 infection in any examined bat, including no viral excretion, no transmission, no detectable virus in tissues, and no signs of disease or pathology. Based on our findings, it appears that big brown bats are resistant to infection with the SARS-CoV-2. The potential susceptibility of other North American bat species to SARS-CoV-2 remains to be investigated.


Subject(s)
COVID-19 , Chiroptera , Coronaviridae , Animals , COVID-19/veterinary , Humans , North America/epidemiology , Phylogeny , SARS-CoV-2
7.
Viruses ; 13(10)2021 10 07.
Article in English | MEDLINE | ID: covidwho-1463837

ABSTRACT

In summer 2020, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was detected on mink farms in Utah. An interagency One Health response was initiated to assess the extent of the outbreak and included sampling animals from on or near affected mink farms and testing them for SARS-CoV-2 and non-SARS coronaviruses. Among the 365 animals sampled, including domestic cats, mink, rodents, raccoons, and skunks, 261 (72%) of the animals harbored at least one coronavirus. Among the samples that could be further characterized, 127 alphacoronaviruses and 88 betacoronaviruses (including 74 detections of SARS-CoV-2 in mink) were identified. Moreover, at least 10% (n = 27) of the coronavirus-positive animals were found to be co-infected with more than one coronavirus. Our findings indicate an unexpectedly high prevalence of coronavirus among the domestic and wild free-roaming animals tested on mink farms. These results raise the possibility that mink farms could be potential hot spots for future trans-species viral spillover and the emergence of new pandemic coronaviruses.


Subject(s)
Alphacoronavirus/isolation & purification , COVID-19/epidemiology , COVID-19/veterinary , SARS-CoV-2/isolation & purification , Alphacoronavirus/classification , Alphacoronavirus/genetics , Animals , Animals, Domestic/virology , Animals, Wild/virology , Cats , Disease Hotspot , Female , Male , Mephitidae/virology , Mice , Mink/virology , Raccoons/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , Utah/epidemiology
8.
Psychosomatic Medicine ; 83(7):A16-A16, 2021.
Article in English | Web of Science | ID: covidwho-1405805
9.
J Vet Diagn Invest ; 33(6): 1039-1051, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1322903

ABSTRACT

The continued search for intermediate hosts and potential reservoirs for SARS-CoV2 makes it clear that animal surveillance is critical in outbreak response and prevention. Real-time RT-PCR assays for SARS-CoV2 detection can easily be adapted to different host species. U.S. veterinary diagnostic laboratories have used the CDC assays or other national reference laboratory methods to test animal samples. However, these methods have only been evaluated using internal validation protocols. To help the laboratories evaluate their SARS-CoV2 test methods, an interlaboratory comparison (ILC) was performed in collaboration with multiple organizations. Forty-four sets of 19 blind-coded RNA samples in Tris-EDTA (TE) buffer or PrimeStore transport medium were shipped to 42 laboratories. Results were analyzed according to the principles of the International Organization for Standardization (ISO) 16140-2:2016 standard. Qualitative assessment of PrimeStore samples revealed that, in approximately two-thirds of the laboratories, the limit of detection with a probability of 0.95 (LOD95) for detecting the RNA was ≤20 copies per PCR reaction, close to the theoretical LOD of 3 copies per reaction. This level of sensitivity is not expected in clinical samples because of additional factors, such as sample collection, transport, and extraction of RNA from the clinical matrix. Quantitative assessment of Ct values indicated that reproducibility standard deviations for testing the RNA with assays reported as N1 were slightly lower than those for N2, and they were higher for the RNA in PrimeStore medium than those in TE buffer. Analyst experience and the use of either a singleplex or multiplex PCR also affected the quantitative ILC test results.


Subject(s)
COVID-19 , RNA, Viral , Animals , COVID-19/veterinary , Laboratories , RNA, Viral/genetics , Reproducibility of Results , SARS-CoV-2 , Sensitivity and Specificity
10.
Emerg Infect Dis ; 27(3): 988-990, 2021 03.
Article in English | MEDLINE | ID: covidwho-1100026

ABSTRACT

In August 2020, outbreaks of coronavirus disease were confirmed on mink farms in Utah, USA. We surveyed mammals captured on and around farms for evidence of infection or exposure. Free-ranging mink, presumed domestic escapees, exhibited high antibody titers, suggesting a potential severe acute respiratory syndrome coronavirus 2 transmission pathway to native wildlife.


Subject(s)
Animals, Wild/virology , Mink/virology , SARS-CoV-2/isolation & purification , Animals , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/transmission , COVID-19/veterinary , Farms , Mammals/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Utah/epidemiology , Zoonoses/diagnosis , Zoonoses/epidemiology , Zoonoses/transmission
11.
PLoS Pathog ; 16(9): e1008758, 2020 09.
Article in English | MEDLINE | ID: covidwho-742547

ABSTRACT

The COVID-19 pandemic highlights the substantial public health, economic, and societal consequences of virus spillover from a wildlife reservoir. Widespread human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also presents a new set of challenges when considering viral spillover from people to naïve wildlife and other animal populations. The establishment of new wildlife reservoirs for SARS-CoV-2 would further complicate public health control measures and could lead to wildlife health and conservation impacts. Given the likely bat origin of SARS-CoV-2 and related beta-coronaviruses (ß-CoVs), free-ranging bats are a key group of concern for spillover from humans back to wildlife. Here, we review the diversity and natural host range of ß-CoVs in bats and examine the risk of humans inadvertently infecting free-ranging bats with SARS-CoV-2. Our review of the global distribution and host range of ß-CoV evolutionary lineages suggests that 40+ species of temperate-zone North American bats could be immunologically naïve and susceptible to infection by SARS-CoV-2. We highlight an urgent need to proactively connect the wellbeing of human and wildlife health during the current pandemic and to implement new tools to continue wildlife research while avoiding potentially severe health and conservation impacts of SARS-CoV-2 "spilling back" into free-ranging bat populations.


Subject(s)
Animals, Wild/virology , Betacoronavirus/pathogenicity , Coronavirus Infections/virology , Pneumonia, Viral/virology , Animals , COVID-19 , Chiroptera/virology , Genome, Viral/genetics , Host Specificity/physiology , Humans , Pandemics , SARS-CoV-2
12.
Arch Virol ; 165(10): 2373-2377, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-695405

ABSTRACT

In situ hybridization (ISH) and immunohistochemistry (IHC) are essential tools to characterize SARS-CoV-2 infection and tropism in naturally and experimentally infected animals and also for diagnostic purposes. Here, we describe three RNAscope®-based ISH assays targeting the ORF1ab, spike, and nucleocapsid genes and IHC assays targeting the spike and nucleocapsid proteins of SARS-CoV-2.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Animals , Antibodies, Monoclonal , Antibodies, Viral , Antisense Elements (Genetics)/genetics , COVID-19 , COVID-19 Testing , Chlorocebus aethiops , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Genes, Viral , Humans , Immunohistochemistry/methods , In Situ Hybridization/methods , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Pandemics , Phosphoproteins , Pneumonia, Viral/virology , Polyproteins , RNA, Viral/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL