Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sci Rep ; 11(1): 20238, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1467130

ABSTRACT

Neurological complications worsen outcomes in COVID-19. To define the prevalence of neurological conditions among hospitalized patients with a positive SARS-CoV-2 reverse transcription polymerase chain reaction test in geographically diverse multinational populations during early pandemic, we used electronic health records (EHR) from 338 participating hospitals across 6 countries and 3 continents (January-September 2020) for a cross-sectional analysis. We assessed the frequency of International Classification of Disease code of neurological conditions by countries, healthcare systems, time before and after admission for COVID-19 and COVID-19 severity. Among 35,177 hospitalized patients with SARS-CoV-2 infection, there was an increase in the proportion with disorders of consciousness (5.8%, 95% confidence interval [CI] 3.7-7.8%, pFDR < 0.001) and unspecified disorders of the brain (8.1%, 5.7-10.5%, pFDR < 0.001) when compared to the pre-admission proportion. During hospitalization, the relative risk of disorders of consciousness (22%, 19-25%), cerebrovascular diseases (24%, 13-35%), nontraumatic intracranial hemorrhage (34%, 20-50%), encephalitis and/or myelitis (37%, 17-60%) and myopathy (72%, 67-77%) were higher for patients with severe COVID-19 when compared to those who never experienced severe COVID-19. Leveraging a multinational network to capture standardized EHR data, we highlighted the increased prevalence of central and peripheral neurological phenotypes in patients hospitalized with COVID-19, particularly among those with severe disease.


Subject(s)
COVID-19 , Nervous System Diseases , Pandemics , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/complications , COVID-19/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , Prevalence , Severity of Illness Index , Young Adult
2.
J Med Internet Res ; 23(10): e31400, 2021 10 11.
Article in English | MEDLINE | ID: covidwho-1463405

ABSTRACT

BACKGROUND: Many countries have experienced 2 predominant waves of COVID-19-related hospitalizations. Comparing the clinical trajectories of patients hospitalized in separate waves of the pandemic enables further understanding of the evolving epidemiology, pathophysiology, and health care dynamics of the COVID-19 pandemic. OBJECTIVE: In this retrospective cohort study, we analyzed electronic health record (EHR) data from patients with SARS-CoV-2 infections hospitalized in participating health care systems representing 315 hospitals across 6 countries. We compared hospitalization rates, severe COVID-19 risk, and mean laboratory values between patients hospitalized during the first and second waves of the pandemic. METHODS: Using a federated approach, each participating health care system extracted patient-level clinical data on their first and second wave cohorts and submitted aggregated data to the central site. Data quality control steps were adopted at the central site to correct for implausible values and harmonize units. Statistical analyses were performed by computing individual health care system effect sizes and synthesizing these using random effect meta-analyses to account for heterogeneity. We focused the laboratory analysis on C-reactive protein (CRP), ferritin, fibrinogen, procalcitonin, D-dimer, and creatinine based on their reported associations with severe COVID-19. RESULTS: Data were available for 79,613 patients, of which 32,467 were hospitalized in the first wave and 47,146 in the second wave. The prevalence of male patients and patients aged 50 to 69 years decreased significantly between the first and second waves. Patients hospitalized in the second wave had a 9.9% reduction in the risk of severe COVID-19 compared to patients hospitalized in the first wave (95% CI 8.5%-11.3%). Demographic subgroup analyses indicated that patients aged 26 to 49 years and 50 to 69 years; male and female patients; and black patients had significantly lower risk for severe disease in the second wave than in the first wave. At admission, the mean values of CRP were significantly lower in the second wave than in the first wave. On the seventh hospital day, the mean values of CRP, ferritin, fibrinogen, and procalcitonin were significantly lower in the second wave than in the first wave. In general, countries exhibited variable changes in laboratory testing rates from the first to the second wave. At admission, there was a significantly higher testing rate for D-dimer in France, Germany, and Spain. CONCLUSIONS: Patients hospitalized in the second wave were at significantly lower risk for severe COVID-19. This corresponded to mean laboratory values in the second wave that were more likely to be in typical physiological ranges on the seventh hospital day compared to the first wave. Our federated approach demonstrated the feasibility and power of harmonizing heterogeneous EHR data from multiple international health care systems to rapidly conduct large-scale studies to characterize how COVID-19 clinical trajectories evolve.


Subject(s)
COVID-19 , Pandemics , Adult , Aged , Female , Hospitalization , Hospitals , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2
3.
GeoJournal ; : 1-13, 2021 Jul 23.
Article in English | MEDLINE | ID: covidwho-1321776

ABSTRACT

Global environmental change is mainly due to human behaviours and is a major threat to sustainability. Despite all the health and economic consequences, the impact of the COVID-19 pandemic lockdown on environmental health warrants the scientific community's attention. Thus, this article examined and narratively reviewed the impact of several drastic measures taken on the macro environment and holistic planetary health. We note that the amount of pollution in the air, water, soil, and noise showed a significant decline during the pandemic. Global air quality improved due to lower anthropogenic emissions of air pollutants and atmospheric particles. Water ecosystems also demonstrated signs of recuperation in many countries. Less commercial fishing internationally resulted in the restoration of some aquatic life. Additionally, significant reduction of solid and water waste led to less soil pollution. Some places experienced cleaner beaches and ocean water while wildlife sightings in urban areas across the world occurred more often. Lastly, the COVID-19 pandemic lockdown also led to a worldwide decline in noise pollution. However, the beneficial environmental effects will not be permanent as the world gradually returns to its pre-pandemic status quo. Therefore, behavioural changes such as adopting a lifestyle that reduces carbon footprint are needed to make a positive impact on the environment. In addition, world leaders should consider the national policy changes necessary to ensure continuity of as many of the positive environmental impacts from the COVID-19 pandemic lockdown as possible. Those changes would also serve to lessen the likelihood of another zoonotic calamity.

4.
JAMA Netw Open ; 4(6): e2112596, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1265355

ABSTRACT

Importance: Additional sources of pediatric epidemiological and clinical data are needed to efficiently study COVID-19 in children and youth and inform infection prevention and clinical treatment of pediatric patients. Objective: To describe international hospitalization trends and key epidemiological and clinical features of children and youth with COVID-19. Design, Setting, and Participants: This retrospective cohort study included pediatric patients hospitalized between February 2 and October 10, 2020. Patient-level electronic health record (EHR) data were collected across 27 hospitals in France, Germany, Spain, Singapore, the UK, and the US. Patients younger than 21 years who tested positive for COVID-19 and were hospitalized at an institution participating in the Consortium for Clinical Characterization of COVID-19 by EHR were included in the study. Main Outcomes and Measures: Patient characteristics, clinical features, and medication use. Results: There were 347 males (52%; 95% CI, 48.5-55.3) and 324 females (48%; 95% CI, 44.4-51.3) in this study's cohort. There was a bimodal age distribution, with the greatest proportion of patients in the 0- to 2-year (199 patients [30%]) and 12- to 17-year (170 patients [25%]) age range. Trends in hospitalizations for 671 children and youth found discrete surges with variable timing across 6 countries. Data from this cohort mirrored national-level pediatric hospitalization trends for most countries with available data, with peaks in hospitalizations during the initial spring surge occurring within 23 days in the national-level and 4CE data. A total of 27 364 laboratory values for 16 laboratory tests were analyzed, with mean values indicating elevations in markers of inflammation (C-reactive protein, 83 mg/L; 95% CI, 53-112 mg/L; ferritin, 417 ng/mL; 95% CI, 228-607 ng/mL; and procalcitonin, 1.45 ng/mL; 95% CI, 0.13-2.77 ng/mL). Abnormalities in coagulation were also evident (D-dimer, 0.78 ug/mL; 95% CI, 0.35-1.21 ug/mL; and fibrinogen, 477 mg/dL; 95% CI, 385-569 mg/dL). Cardiac troponin, when checked (n = 59), was elevated (0.032 ng/mL; 95% CI, 0.000-0.080 ng/mL). Common complications included cardiac arrhythmias (15.0%; 95% CI, 8.1%-21.7%), viral pneumonia (13.3%; 95% CI, 6.5%-20.1%), and respiratory failure (10.5%; 95% CI, 5.8%-15.3%). Few children were treated with COVID-19-directed medications. Conclusions and Relevance: This study of EHRs of children and youth hospitalized for COVID-19 in 6 countries demonstrated variability in hospitalization trends across countries and identified common complications and laboratory abnormalities in children and youth with COVID-19 infection. Large-scale informatics-based approaches to integrate and analyze data across health care systems complement methods of disease surveillance and advance understanding of epidemiological and clinical features associated with COVID-19 in children and youth.


Subject(s)
COVID-19/epidemiology , Electronic Health Records/statistics & numerical data , Hospitalization/statistics & numerical data , Pandemics , SARS-CoV-2 , Adolescent , Child , Child, Preschool , Female , Global Health , Humans , Infant , Infant, Newborn , Male , Retrospective Studies
5.
Medicina (Kaunas) ; 57(5)2021 May 19.
Article in English | MEDLINE | ID: covidwho-1234775

ABSTRACT

Background and Objectives: The Coronavirus disease 2019 (COVID-19) pandemic caused significant disruption to established medical care systems globally. Thus, this study was aimed to compare the admission and outcome variables such as number of patient and its severity, acute recanalisation therapy given pre-post COVID-19 at a primary stroke centre located in Malaysia. Methods: This cross-sectional hospital-based study included adult ischaemic stroke patients. Variables of the study included the number of ischaemic stroke patients, the proportions of recanalisation therapies, stroke severity during admission based on the National Institutes of Health Stroke Scale, functional outcome at discharge based on the modified Rankin Scale, and relevant workflow metrics. We compared the outcome between two six-month periods, namely the pre-COVID-19 period (March 2019 to September 2019) and the COVID-19 period (March 2020 to September 2020). Results: There were 131 and 156 patients, respectively, from the pre-COVID-19 period and the COVID-19 period. The median door-to-scan time and the median door-to-reperfusion time were both significantly shorter in the COVID-19 period (24.5 min versus 12.0 min, p = 0.047) and (93.5 min versus 60.0 min, p = 0.015), respectively. There were also significantly more patients who received intravenous thrombolysis (7.6% versus 17.3%, p = 0.015) and mechanical thrombectomy (0.8% versus 6.4%, p = 0.013) in the COVID-19 period, respectively. Conclusions: The COVID-19 pandemic may not have caused disruptions of acute stroke care in our primary stroke centre. Our data indicated that the number of ischaemic stroke events remained stable, with a significant increase of recanalisation therapies and better in-hospital workflow metrics during the COVID-19 pandemic period. However, we would like to highlight that the burden of COVID-19 cases in the study area was very low. Therefore, the study may not have captured the true burden (and relevant delays in stroke patient management) during the COVID-19 pandemic. The effect of the pandemic crisis is ongoing and both pre-hospital and in-hospital care systems must continue to provide optimal, highly time-dependent stroke care services.


Subject(s)
Brain Ischemia , COVID-19 , Stroke , Adult , Cross-Sectional Studies , Humans , Malaysia/epidemiology , Pandemics , SARS-CoV-2 , Stroke/epidemiology , Stroke/therapy , Thrombectomy , Thrombolytic Therapy , Time-to-Treatment , Treatment Outcome
6.
J Med Internet Res ; 23(3): e22219, 2021 03 02.
Article in English | MEDLINE | ID: covidwho-1088863

ABSTRACT

Coincident with the tsunami of COVID-19-related publications, there has been a surge of studies using real-world data, including those obtained from the electronic health record (EHR). Unfortunately, several of these high-profile publications were retracted because of concerns regarding the soundness and quality of the studies and the EHR data they purported to analyze. These retractions highlight that although a small community of EHR informatics experts can readily identify strengths and flaws in EHR-derived studies, many medical editorial teams and otherwise sophisticated medical readers lack the framework to fully critically appraise these studies. In addition, conventional statistical analyses cannot overcome the need for an understanding of the opportunities and limitations of EHR-derived studies. We distill here from the broader informatics literature six key considerations that are crucial for appraising studies utilizing EHR data: data completeness, data collection and handling (eg, transformation), data type (ie, codified, textual), robustness of methods against EHR variability (within and across institutions, countries, and time), transparency of data and analytic code, and the multidisciplinary approach. These considerations will inform researchers, clinicians, and other stakeholders as to the recommended best practices in reviewing manuscripts, grants, and other outputs from EHR-data derived studies, and thereby promote and foster rigor, quality, and reliability of this rapidly growing field.


Subject(s)
COVID-19/epidemiology , Data Collection/methods , Electronic Health Records , Data Collection/standards , Humans , Peer Review, Research/standards , Publishing/standards , Reproducibility of Results , SARS-CoV-2/isolation & purification
7.
J Am Med Inform Assoc ; 28(7): 1411-1420, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1075534

ABSTRACT

OBJECTIVE: The Consortium for Clinical Characterization of COVID-19 by EHR (4CE) is an international collaboration addressing coronavirus disease 2019 (COVID-19) with federated analyses of electronic health record (EHR) data. We sought to develop and validate a computable phenotype for COVID-19 severity. MATERIALS AND METHODS: Twelve 4CE sites participated. First, we developed an EHR-based severity phenotype consisting of 6 code classes, and we validated it on patient hospitalization data from the 12 4CE clinical sites against the outcomes of intensive care unit (ICU) admission and/or death. We also piloted an alternative machine learning approach and compared selected predictors of severity with the 4CE phenotype at 1 site. RESULTS: The full 4CE severity phenotype had pooled sensitivity of 0.73 and specificity 0.83 for the combined outcome of ICU admission and/or death. The sensitivity of individual code categories for acuity had high variability-up to 0.65 across sites. At one pilot site, the expert-derived phenotype had mean area under the curve of 0.903 (95% confidence interval, 0.886-0.921), compared with an area under the curve of 0.956 (95% confidence interval, 0.952-0.959) for the machine learning approach. Billing codes were poor proxies of ICU admission, with as low as 49% precision and recall compared with chart review. DISCUSSION: We developed a severity phenotype using 6 code classes that proved resilient to coding variability across international institutions. In contrast, machine learning approaches may overfit hospital-specific orders. Manual chart review revealed discrepancies even in the gold-standard outcomes, possibly owing to heterogeneous pandemic conditions. CONCLUSIONS: We developed an EHR-based severity phenotype for COVID-19 in hospitalized patients and validated it at 12 international sites.


Subject(s)
COVID-19 , Electronic Health Records , Severity of Illness Index , COVID-19/classification , Hospitalization , Humans , Machine Learning , Prognosis , ROC Curve , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...