Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
2.
Cell Mol Immunol ; 2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1735231

ABSTRACT

Neutrophil extracellular traps (NETs) can capture and kill viruses, such as influenza viruses, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV), thus contributing to host defense. Contrary to our expectation, we show here that the histones released by NETosis enhance the infectivity of SARS-CoV-2, as found by using live SARS-CoV-2 and two pseudovirus systems as well as a mouse model. The histone H3 or H4 selectively binds to subunit 2 of the spike (S) protein, as shown by a biochemical binding assay, surface plasmon resonance and binding energy calculation as well as the construction of a mutant S protein by replacing four acidic amino acids. Sialic acid on the host cell surface is the key molecule to which histones bridge subunit 2 of the S protein. Moreover, histones enhance cell-cell fusion. Finally, treatment with an inhibitor of NETosis, histone H3 or H4, or sialic acid notably affected the levels of sgRNA copies and the number of apoptotic cells in a mouse model. These findings suggest that SARS-CoV-2 could hijack histones from neutrophil NETosis to promote its host cell attachment and entry process and may be important in exploring pathogenesis and possible strategies to develop new effective therapies for COVID-19.

3.
Signal Transduct Target Ther ; 6(1): 439, 2021 12 24.
Article in English | MEDLINE | ID: covidwho-1585883

ABSTRACT

The development of animal models for COVID-19 is essential for basic research and drug/vaccine screening. Previously reported COVID-19 animal models need to be established under a high biosafety level condition for the utilization of live SARS-CoV-2, which greatly limits its application in routine research. Here, we generate a mouse model of COVID-19 under a general laboratory condition that captures multiple characteristics of SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) observed in humans. Briefly, human ACE2-transgenic (hACE2) mice were intratracheally instilled with the formaldehyde-inactivated SARS-CoV-2, resulting in a rapid weight loss and detrimental changes in lung structure and function. The pulmonary pathologic changes were characterized by diffuse alveolar damage with pulmonary consolidation, hemorrhage, necrotic debris, and hyaline membrane formation. The production of fatal cytokines (IL-1ß, TNF-α, and IL-6) and the infiltration of activated neutrophils, inflammatory monocyte-macrophages, and T cells in the lung were also determined, suggesting the activation of an adaptive immune response. Therapeutic strategies, such as dexamethasone or passive antibody therapy, could effectively ameliorate the disease progression in this model. Therefore, the established mouse model for SARS-CoV-2-induced ARDS in the current study may provide a robust tool for researchers in the standard open laboratory to investigate the pathological mechanisms or develop new therapeutic strategies for COVID-19 and ARDS.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19/immunology , Lung/immunology , Respiratory Distress Syndrome/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/genetics , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Respiratory Distress Syndrome/genetics
4.
MedComm ; 2021.
Article in English | EuropePMC | ID: covidwho-1567507

ABSTRACT

Several SARS‐CoV‐2 variants have emerged since the pandemic, bringing about a renewed threat to the public. Delta variant (B.1.617.2) was first detected in October 2020 in India and was characterized as variants of concern (VOC) by WHO on May 11, 2021. Delta variant rapidly outcompeted other variants to become the dominant circulating lineages due to its clear competitive advantage. There is emerging evidence of enhanced transmissibility and reduced vaccine effectiveness (VE) against Delta variant. Therefore, it is crucial to understand the features and phenotypic effects of this variant. Herein, we comprehensively described the evaluation and features of Delta variant, summarized the effects of mutations in spike on the infectivity, transmission ability, immune evasion, and provided a perspective on efficient approaches for preventing and overcoming COVID‐19. SARS‐CoV Delta (B.1.617.2) variant has been classified as variants of concern (VOC) by World Health Organization (WHO). The reproductive number (R0) of SARS‐CoV‐2 wild type and Delta variant is 2.3‐5.7 and 5‐8, respectively. Patients infected by Delta variant exhibit shorter mean generation time and mean serial interval, higher virus load and hospitalization rate compared to those infected by wild‐type SARS‐CoV‐2.

5.
MedComm ; 2021.
Article in English | EuropePMC | ID: covidwho-1567359

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is the etiology of coronavirus disease 2019 (COVID‐19) pandemic. Current variants including Alpha, Beta, Gamma, Delta, and Lambda increase the capacity of infection and transmission of SARS‐CoV‐2, which might disable the in‐used therapies and vaccines. The COVID‐19 has now put an enormous strain on health care system all over the world. Therefore, the development of animal models that can capture characteristics and immune responses observed in COVID‐19 patients is urgently needed. Appropriate models could accelerate the testing of therapeutic drugs and vaccines against SARS‐CoV‐2. In this review, we aim to summarize the current animal models for SARS‐CoV‐2 infection, including mice, hamsters, nonhuman primates, and ferrets, and discuss the details of transmission, pathology, and immunology induced by SARS‐CoV‐2 in these animal models. We hope this could throw light to the increased usefulness in fundamental studies of COVID‐19 and the preclinical analysis of vaccines and therapeutic agents. Animal models that recapitulate characteristics and immune responses observed in COVID‐19 patients are urgently needed. These animal models such as mouse, hamster, nonhuman primate, and ferret, have provided robust platforms for studying the transmission, pathogenesis, and immunology induced by SARS‐CoV‐2, and for evaluating the immunomodulatory and antiviral drugs and vaccines against COVID‐19.

6.
MedComm ; 2021.
Article in English | EuropePMC | ID: covidwho-1567323

ABSTRACT

The number of coronavirus disease 2019 (COVID‐19) cases has been increasing significantly, and the disease has evolved into a global pandemic, posing an unprecedented challenge to the healthcare community. Angiotensin‐converting enzyme 2, the binding and entry receptor of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) in hosts, is also expressed on pulmonary vascular endothelium;thus, pulmonary vasculature is a potential target in COVID‐19. Indeed, pulmonary vascular thickening is observed by early clinical imaging, implying a tropism of SARS‐CoV‐2 for pulmonary vasculature. Recent studies reported that COVID‐19 is associated with vascular endothelial damage and dysfunction along with inflammation, coagulopathy, and microthrombosis;all of these pathologic changes are the hallmarks of pulmonary vascular diseases. Notwithstanding the not fully elucidated effects of COVID‐19 on pulmonary vasculature, the vascular endotheliopathy that occurs after infection is attributed to direct infection and indirect damage mainly caused by renin‐angiotensin‐aldosterone system imbalance, coagulation cascade, oxidative stress, immune dysregulation, and intussusceptive angiogenesis. Degradation of endothelial glycocalyx exposes endothelial cell (EC) surface receptors to the vascular lumen, which renders pulmonary ECs more susceptible to SARS‐CoV‐2 infection. The present article reviews the potential pulmonary vascular pathophysiology and clinical presentations in COVID‐19 to provide a basis for clinicians and scientists, providing insights into the development of therapeutic strategies targeting pulmonary vasculature. SARS‐CoV‐2 infection‐induced pulmonary vascular injury and potential treatments target the pulmonary vascular system.

7.
MedComm (2020) ; 2021 Dec 16.
Article in English | MEDLINE | ID: covidwho-1568243

ABSTRACT

Coronavirus disease 2019 (COVID-19) has brought about a great threat to global public health. Recently, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant B.1.1.529 has been reported in South Africa and induced a rapid increase in COVID-19 cases. On November 24, 2021, B.1.1.529 named Omicron was designated as a variant under monitoring (VUM) by World Health Organization (WHO). Two days later, the Omicron variant was classified as a variant of concern (VOC). This variant harbors a high number of mutations, including 15 mutations in the receptor-binding domain (RBD) of spike. The Omicron variant also shares several mutations with the previous VOC Alpha, Beta, and Gamma variants, which immediately raised global concerns about viral transmissibility, pathogenicity, and immune evasion. Here we described the discovery and characteristics of the Omicron variant, compared the mutations of the spike in the five VOCs, and further raised possible strategies to prevent and overcome the prevalence of the Omicron variant.

8.
Signal Transduct Target Ther ; 6(1): 406, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1532031

ABSTRACT

Currently, SARS-CoV-2 has caused a global pandemic and threatened many lives. Although SARS-CoV-2 mainly causes respiratory diseases, growing data indicate that SARS-CoV-2 can also invade the central nervous system (CNS) and peripheral nervous system (PNS) causing multiple neurological diseases, such as encephalitis, encephalopathy, Guillain-Barré syndrome, meningitis, and skeletal muscular symptoms. Despite the increasing incidences of clinical neurological complications of SARS-CoV-2, the precise neuroinvasion mechanisms of SARS-CoV-2 have not been fully established. In this review, we primarily describe the clinical neurological complications associated with SARS-CoV-2 and discuss the potential mechanisms through which SARS-CoV-2 invades the brain based on the current evidence. Finally, we summarize the experimental models were used to study SARS-CoV-2 neuroinvasion. These data form the basis for studies on the significance of SARS-CoV-2 infection in the brain.


Subject(s)
Brain , COVID-19 , Nervous System Diseases , SARS-CoV-2/metabolism , Brain/metabolism , Brain/pathology , Brain/virology , COVID-19/complications , COVID-19/metabolism , COVID-19/pathology , Humans , Nervous System Diseases/etiology , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Nervous System Diseases/virology
9.
MedComm (2020) ; 2021 Oct 17.
Article in English | MEDLINE | ID: covidwho-1469531

ABSTRACT

The number of coronavirus disease 2019 (COVID-19) cases has been increasing significantly, and the disease has evolved into a global pandemic, posing an unprecedented challenge to the healthcare community. Angiotensin-converting enzyme 2, the binding and entry receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in hosts, is also expressed on pulmonary vascular endothelium; thus, pulmonary vasculature is a potential target in COVID-19. Indeed, pulmonary vascular thickening is observed by early clinical imaging, implying a tropism of SARS-CoV-2 for pulmonary vasculature. Recent studies reported that COVID-19 is associated with vascular endothelial damage and dysfunction along with inflammation, coagulopathy, and microthrombosis; all of these pathologic changes are the hallmarks of pulmonary vascular diseases. Notwithstanding the not fully elucidated effects of COVID-19 on pulmonary vasculature, the vascular endotheliopathy that occurs after infection is attributed to direct infection and indirect damage mainly caused by renin-angiotensin-aldosterone system imbalance, coagulation cascade, oxidative stress, immune dysregulation, and intussusceptive angiogenesis. Degradation of endothelial glycocalyx exposes endothelial cell (EC) surface receptors to the vascular lumen, which renders pulmonary ECs more susceptible to SARS-CoV-2 infection. The present article reviews the potential pulmonary vascular pathophysiology and clinical presentations in COVID-19 to provide a basis for clinicians and scientists, providing insights into the development of therapeutic strategies targeting pulmonary vasculature.

12.
MedComm (2020) ; 2021 May 17.
Article in English | MEDLINE | ID: covidwho-1222647

ABSTRACT

The emerging variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in pandemic call for the urgent development of universal corona virus disease 2019 (COVID-19) vaccines which could be effective for both wild-type SARS-CoV-2 and mutant strains. In the current study, we formulated protein subunit vaccines with AS03 adjuvant and recombinant proteins of S1 subunit of SARS-CoV-2 (S1-WT) and S1 variant (K417N, E484K, N501Y, and D614G) subunit (S1-Mut), and immunized transgenic mice that express human angiotensin-converting enzyme 2 (hACE2). The S1 protein-specific antibody production and the neutralization capability for SARS-CoV-2 and B.1.351 variant were measured after immunization in mice. The results revealed that the S1-Mut antigens were more effective in inhibiting the receptor-binding domain and ACE2 binding in B.1.351 variant than in wild-type SARS-CoV-2. Furthermore, the development of a bivalent vaccine exhibited the ideal neutralization properties against wild-type and B.1.351 variant, as well as other variants. Our findings may provide a rationale for the development of a bivalent recombinant vaccine targeting the S1 protein that can induce the neutralizing antibodies against both SARS-CoV-2 variants and wild-type of the virus and may be of importance to explore the potential clinical use of bivalent recombinant vaccine in the future.

14.
Nature ; 586(7830): 572-577, 2020 10.
Article in English | MEDLINE | ID: covidwho-691301

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a respiratory disease called coronavirus disease 2019 (COVID-19), the spread of which has led to a pandemic. An effective preventive vaccine against this virus is urgently needed. As an essential step during infection, SARS-CoV-2 uses the receptor-binding domain (RBD) of the spike protein to engage with the receptor angiotensin-converting enzyme 2 (ACE2) on host cells1,2. Here we show that a recombinant vaccine that comprises residues 319-545 of the RBD of the spike protein induces a potent functional antibody response in immunized mice, rabbits and non-human primates (Macaca mulatta) as early as 7 or 14 days after the injection of a single vaccine dose. The sera from the immunized animals blocked the binding of the RBD to ACE2, which is expressed on the cell surface, and neutralized infection with a SARS-CoV-2 pseudovirus and live SARS-CoV-2 in vitro. Notably, vaccination also provided protection in non-human primates to an in vivo challenge with SARS-CoV-2. We found increased levels of RBD-specific antibodies in the sera of patients with COVID-19. We show that several immune pathways and CD4 T lymphocytes are involved in the induction of the vaccine antibody response. Our findings highlight the importance of the RBD domain in the design of SARS-CoV-2 vaccines and provide a rationale for the development of a protective vaccine through the induction of antibodies against the RBD domain.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , COVID-19 , COVID-19 Vaccines , Humans , Macaca mulatta/immunology , Macaca mulatta/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Animal , Models, Molecular , Protein Domains , SARS-CoV-2 , Serum/immunology , Spleen/cytology , Spleen/immunology , T-Lymphocytes/immunology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL