Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Virol Methods ; 307: 114564, 2022 09.
Article in English | MEDLINE | ID: covidwho-1878302

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 infections has led to excess deaths worldwide. Neutralizing antibodies (nAbs) against viral spike protein acquired from natural infections or vaccinations contribute to protection against new- and re-infections. Besides neutralization, antibody-mediated cellular cytotoxicity (ADCC) and phagocytosis (ADCP) are also important for viral clearance. However, due to the lack of convenient methods, the ADCC and ADCP responses elicited by viral infections or vaccinations remain to be explored. Here, we developed cell-based assays using target cells stably expressing SARS-CoV-2 spikes and Jurkat-NFAT-CD16a/CD32a effector cells for ADCC/ADCP measurements of monoclonal antibodies and human convalescent COVID-19 plasmas (HCPs). In control samples (n = 190), the specificity was 99.5% (95%CI: 98.4-100%) and 97.4% (95%CI: 95.1-99.6%) for the ADCC and ADCP assays, respectively. Among 87 COVID-19 HCPs, 83 (sensitivity: 95.4%, 95%CI: 91.0-99.8%) and 81 (sensitivity: 93.1%, 95%CI: 87.8-98.4%) showed detectable ADCC (titer range: 7.4-1721.6) and ADCP activities (titer range: 4-523.2). Notably, both ADCC and ADCP antibody titers positively correlated with the nAb titers in HCPs. In summary, we developed new tools for quantitative ADCC and ADCP analysis against SARS-CoV-2, which may facilitate further evaluations of Fc-mediated effector functions in preventing and treating against SARS-CoV-2.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Humans , Immunoassay/methods , Pandemics , Phagocytosis , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
2.
Cell Rep ; 38(12): 110558, 2022 03 22.
Article in English | MEDLINE | ID: covidwho-1797096

ABSTRACT

Mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike receptor-binding domain (RBD) may alter viral host tropism and affect the activities of neutralizing antibodies. Here, we investigated 153 RBD mutants and 11 globally circulating variants of concern (VOCs) and variants of interest (VOIs) (including Omicron) for their antigenic changes and cross-species tropism in cells expressing 18 ACE2 orthologs. Several RBD mutations strengthened viral infectivity in cells expressing ACE2 orthologs of non-human animals, particularly those less susceptible to the ancestral strain. The mutations surrounding amino acids (aas) 439-448 and aa 484 are more likely to cause neutralization resistance. Strikingly, enhanced cross-species infection potential in the mouse and ferret, instead of the neutralization-escape scores of the mutations, account for the positive correlation with the cumulative prevalence of mutations in humans. These findings present insights for potential drivers of circulating SARS-CoV-2 variants and provide informative parameters for tracking and forecasting spreading mutations.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Ferrets , Humans , Membrane Glycoproteins/metabolism , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Tropism , Viral Envelope Proteins
3.
Cell reports ; 2022.
Article in English | EuropePMC | ID: covidwho-1728589

ABSTRACT

Zhang et al. show in vitro cross-species infectivity and neutralization-escape characteristics of 153 SARS-CoV-2 RBD mutants and 11 globally circulating VOC/VOI variants. They reveal an association between enhanced cross-species infection potential and the current cumulative prevalence of mutations, which can inform surveillance and forecasting of SARS-CoV-2 spike mutations.

SELECTION OF CITATIONS
SEARCH DETAIL