ABSTRACT
Since June 2020, the SARS-CoV-2 Immunity and Reinfection Evaluation (SIREN) study has conducted routine PCR testing in UK healthcare workers and sequenced PCR-positive samples. SIREN detected increases in infections and reinfections during Omicron subvariant waves contemporaneous with national surveillance. SIREN's sentinel surveillance methods can be used for variant surveillance.
ABSTRACT
BACKGROUND: In the UK, during the study period (April to July, 2021), all contacts of people with COVID-19 were required to self-isolate for 10 days, which had adverse impacts on individuals and society. Avoiding the need to self-isolate for those who remain uninfected would be beneficial. We investigated whether daily use of lateral flow devices (LFDs) to test for SARS-CoV-2, with removal of self-isolation for 24 h if negative, could be a safe alternative to self-isolation as a means to minimise onward transmission of the virus. METHODS: We conducted a randomised, controlled, non-inferiority trial in adult contacts identified by COVID-19 contact tracing in England. Consenting participants were randomly assigned to self-isolation (single PCR test, 10-day isolation) or daily contact testing (DCT; seven LFD tests, two PCR tests, no isolation if negative on LFD); participants from a single household were assigned to the same group. Participants were prospectively followed up, with the effect of each intervention on onward transmission established from routinely collected NHS Test and Trace contact tracing data for participants who tested PCR-positive for SARS-CoV-2 during the study period and tertiary cases arising from their contacts (ie, secondary contacts). The primary outcome of the study was the attack rate, the percentage of secondary contacts (close contacts of SARS-CoV-2-positive study participants) who became COVID-19 cases (tertiary cases) in each group. Attack rates were derived from Bernoulli regression models using Huber-White (robust) sandwich estimator clustered standard errors. Attack rates were adjusted for household exposure, vaccination status, and ability to work from home. The non-inferiority margin was 1·9%. The primary analysis was a modified intention-to-treat analysis excluding those who actively withdrew from the study as data from these participants were no longer held. This study is registered with the Research Registry (number 6809). Data collection is complete; analysis is ongoing. FINDINGS: Between April 29 and July 28, 2021, 54 923 eligible individuals were enrolled in the study, with final group allocations (following withdrawals) of 26 123 (52·6%) participants in the DCT group and 23 500 (47·4%) in the self-isolation group. Overall, 4694 participants tested positive for SARS-CoV-2 by PCR (secondary cases), 2364 (10·1%) in the self-isolation group and 2330 (8·9%) in the DCT group. Adjusted attack rates (among secondary contacts) were 7·5% in the self-isolation group and 6·3% in the DCT group (difference of -1·2% [95% CI -2·3 to -0·2]; significantly lower than the non-inferiority margin of 1·9%). INTERPRETATION: DCT with 24 h exemption from self-isolation for essential activities appears to be non-inferior to self-isolation. This study, which provided evidence for the UK Government's daily lateral flow testing policy for vaccinated contacts of COVID-19 cases, indicated that daily testing with LFDs could allow individuals to reduce the risk of onward transmission while minimising the adverse effects of self-isolation. Although contacts in England are no longer required to isolate, the findings will be relevant for future policy decisions around COVID-19 or other communicable infections. FUNDING: UK Government Department of Health and Social Care.
Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , Contact Tracing , Incidence , Family CharacteristicsABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although COVID-19 is a viral illness, many patients admitted to hospital are prescribed antibiotics, based on concerns that COVID-19 patients may experience secondary bacterial infections, and the assumption that they may respond well to antibiotic therapy. This has led to an increase in antibiotic use for some hospitalised patients at a time when accumulating antibiotic resistance is a major global threat to health. Procalcitonin (PCT) is an inflammatory marker measured in blood samples and widely recommended to help diagnose bacterial infections and guide antibiotic treatment. The PEACH study will compare patient outcomes from English and Welsh hospitals that used PCT testing during the first wave of the COVID-19 pandemic with those from hospitals not using PCT. It will help to determine whether, and how, PCT testing should be used in the NHS in future waves of COVID-19 to protect patients from antibiotic overuse. PEACH is a retrospective observational cohort study using patient-level clinical data from acute hospital Trusts and Health Boards in England and Wales. The primary objective is to measure the difference in antibiotic use between COVID-19 patients who did or did not have PCT testing at the time of diagnosis. Secondary objectives include measuring differences in length of stay, mortality, intensive care unit admission, and resistant bacterial infections between these groups.
ABSTRACT
BACKGROUND: Using the COM-B model as a framework, an EU-wide survey aimed to ascertain multidisciplinary healthcare workers' (HCWs') knowledge, attitudes and behaviours towards antibiotics, antibiotic use and antibiotic resistance. The UK findings are presented here. METHODS: A 43-item questionnaire was developed through a two-round modified Delphi consensus process. The UK target quota was 1315 respondents. RESULTS: In total, 2404 participants responded. The highest proportion were nursing and midwifery professionals (42%), pharmacists (23%) and medical doctors (18%). HCWs correctly answered that antibiotics are not effective against viruses (97%), they have associated side effects (97%), unnecessary use makes antibiotics ineffective (97%) and healthy people can carry antibiotic-resistant bacteria (90%). However, fewer than 80% correctly answered that using antibiotics increases a patient's risk of antimicrobial resistant infection or that resistant bacteria can spread from person to person. Whilst the majority of HCWs (81%) agreed there is a connection between their antibiotic prescribing behaviour and the spread of antibiotic-resistant bacteria, only 64% felt that they have a key role in controlling antibiotic resistance. The top three barriers to providing advice or resources were lack of resources (19%), insufficient time (11%) and the patient being uninterested in the information (7%). Approximately 35% of UK respondents who were prescribers prescribed an antibiotic at least once in the previous week to responding to the survey due to a fear of patient deterioration or complications. CONCLUSION: These findings highlight that a multifaceted approach to tackling the barriers to prudent antibiotic use in the UK is required and provides evidence for guiding targeted policy, intervention development and future research. Education and training should focus on patient communication, information on spreading resistant bacteria and increased risk for individuals.
ABSTRACT
OBJECTIVES: To investigate serological differences between SARS-CoV-2 reinfection cases and contemporary controls, to identify antibody correlates of protection against reinfection. METHODS: We performed a case-control study, comparing reinfection cases with singly infected individuals pre-vaccination, matched by gender, age, region and timing of first infection. Serum samples were tested for anti-SARS-CoV-2 spike (anti-S), anti-SARS-CoV-2 nucleocapsid (anti-N), live virus microneutralisation (LV-N) and pseudovirus microneutralisation (PV-N). Results were analysed using fixed effect linear regression and fitted into conditional logistic regression models. RESULTS: We identified 23 cases and 92 controls. First infections occurred before November 2020; reinfections occurred before February 2021, pre-vaccination. Anti-S levels, LV-N and PV-N titres were significantly lower among cases; no difference was found for anti-N levels. Increasing anti-S levels were associated with reduced risk of reinfection (OR 0·63, CI 0·47-0·85), but no association for anti-N levels (OR 0·88, CI 0·73-1·05). Titres >40 were correlated with protection against reinfection for LV-N Wuhan (OR 0·02, CI 0·001-0·31) and LV-N Alpha (OR 0·07, CI 0·009-0·62). For PV-N, titres >100 were associated with protection against Wuhan (OR 0·14, CI 0·03-0·64) and Alpha (0·06, CI 0·008-0·40). CONCLUSIONS: Before vaccination, protection against SARS-CoV-2 reinfection was directly correlated with anti-S levels, PV-N and LV-N titres, but not with anti-N levels. Detectable LV-N titres were sufficient for protection, whilst PV-N titres >100 were required for a protective effect. TRIAL REGISTRATION NUMBER: ISRCTN11041050.
Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/prevention & control , Case-Control Studies , Humans , Reinfection/prevention & control , VaccinationABSTRACT
Introduction. Evidence suggests that although people modify their behaviours, full adherence to self-isolation guidance in England may be suboptimal, which may have a detrimental impact on COVID-19 transmission rates.Hypothesis. Testing asymptomatic contacts of confirmed COVID-19 cases for the presence of SARS-CoV-2 could reduce onward transmission by improving case ascertainment and lessen the impact of self-isolation on un-infected individuals.Aim. This study investigated the feasibility and acceptability of implementing a 'test to enable approach' as part of England's tracing strategy.Methodology. Contacts of confirmed COVID-19 cases were offered serial testing as an alternative to self-isolation using daily self-performed lateral flow device (LFD) tests for the first 7 days post-exposure. Asymptomatic participants with a negative LFD result were given 24 h of freedom from self-isolation between each test. A self-collected confirmatory PCR test was performed on testing positive or at the end of the LFD testing period.Results. Of 1760 contacts, 882 consented to daily testing, of whom 812 individuals were within 48 h of exposure and were sent LFD testing packs. Of those who declined to participate, 39.1% stated they had already accessed PCR testing. Of the 812 who were sent LFD packs, 570 (70.2%) reported one or more LFD results; 102 (17.9%) tested positive. Concordance between reported LFD result and a supplied LFD image was 97.1%. In total, 82.8% of PCR-positive samples and 99.6% of PCR-negative samples were correctly detected by LFD. The proportion of secondary cases from contacts of those who participated in the study and tested positive (6.3%; 95% CI: 3.4-11.1%) was comparable to a comparator group who self-isolated (7.6%; 95% CI: 7.3-7.8%).Conclusion. This study shows a high acceptability, compliance and positivity rates when using self-administered LFDs among contacts of confirmed COVID-19 cases. Offering routine testing as a structured part of the contact tracing process is likely to be an effective method of case ascertainment.
Subject(s)
COVID-19 , COVID-19/diagnosis , Contact Tracing/methods , England/epidemiology , Humans , SARS-CoV-2ABSTRACT
OBJECTIVE: To describe the incidence of, risk factors for, and impact of vaccines on primary SARS-CoV-2 infection during the second wave of the covid-19 pandemic in susceptible hospital healthcare workers in England. DESIGN: Multicentre prospective cohort study. SETTING: National Health Service secondary care health organisations (trusts) in England between 1 September 2020 and 30 April 2021. PARTICIPANTS: Clinical, support, and administrative staff enrolled in the SARS-CoV-2 Immunity and Reinfection Evaluation (SIREN) study with no evidence of previous infection. Vaccination status was obtained from national covid-19 vaccination registries and self-reported. MAIN OUTCOME MEASURE: SARS-CoV-2 infection confirmed by polymerase chain reaction. Mixed effects logistic regression was conducted to determine demographic and occupational risk factors for infection, and an individual based mathematical model was used to predict how large the burden could have been if vaccines had not been available from 8 December 2020 . RESULTS: During England's second wave, 12.9% (2353/18 284) of susceptible SIREN participants became infected with SARS-CoV-2. Infections peaked in late December 2020 and decreased from January 2021, concurrent with the cohort's rapid vaccination coverage and a national lockdown. In multivariable analysis, factors increasing the likelihood of infection in the second wave were being under 25 years old (20.3% (132/651); adjusted odds ratio 1.35, 95% confidence interval 1.07 to 1.69), living in a large household (15.8% (282/1781); 1.54, 1.23 to 1.94, for participants from households of five or more people), having frequent exposure to patients with covid-19 (19.2% (723/3762); 1.79, 1.56 to 2.06, for participants with exposure every shift), working in an emergency department or inpatient ward setting (20.8% (386/1855); 1.76, 1.45 to 2.14), and being a healthcare assistant (18.1% (267/1479); 1.43, 1.16 to 1.77). Time to first vaccination emerged as being strongly associated with infection (P<0.001), with each additional day multiplying a participant's adjusted odds ratio by 1.02. Mathematical model simulations indicated that an additional 9.9% of all patient facing hospital healthcare workers would have been infected were it not for the rapid vaccination coverage. CONCLUSIONS: The rapid covid-19 vaccine rollout from December 2020 averted infection in a large proportion of hospital healthcare workers in England: without vaccines, second wave infections could have been 69% higher. With booster vaccinations being needed for adequate protection from the omicron variant, and perhaps the need for further boosters for future variants, ensuring equitable delivery to healthcare workers is essential. The findings also highlight occupational risk factors that persisted in healthcare workers despite vaccine rollout; a greater understanding of the transmission dynamics responsible for these is needed to help to optimise the infection prevention and control policies that protect healthcare workers from infection and therefore to support staffing levels and maintain healthcare provision. TRIAL REGISTRATION: ISRCTN registry ISRCTN11041050.
Subject(s)
COVID-19 , Vaccines , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Communicable Disease Control , Health Personnel , Humans , Models, Theoretical , Pandemics/prevention & control , Prospective Studies , SARS-CoV-2 , State MedicineABSTRACT
BACKGROUND: Previous infection with SARS-CoV-2 affects the immune response to the first dose of the SARS-CoV-2 vaccine. We aimed to compare SARS-CoV-2-specific T-cell and antibody responses in health-care workers with and without previous SARS-CoV-2 infection following a single dose of the BNT162b2 (tozinameran; Pfizer-BioNTech) mRNA vaccine. METHODS: We sampled health-care workers enrolled in the PITCH study across four hospital sites in the UK (Oxford, Liverpool, Newcastle, and Sheffield). All health-care workers aged 18 years or older consenting to participate in this prospective cohort study were included, with no exclusion criteria applied. Blood samples were collected where possible before vaccination and 28 (±7) days following one or two doses (given 3-4 weeks apart) of the BNT162b2 vaccine. Previous infection was determined by a documented SARS-CoV-2-positive RT-PCR result or the presence of positive anti-SARS-CoV-2 nucleocapsid antibodies. We measured spike-specific IgG antibodies and quantified T-cell responses by interferon-γ enzyme-linked immunospot assay in all participants where samples were available at the time of analysis, comparing SARS-CoV-2-naive individuals to those with previous infection. FINDINGS: Between Dec 9, 2020, and Feb 9, 2021, 119 SARS-CoV-2-naive and 145 previously infected health-care workers received one dose, and 25 SARS-CoV-2-naive health-care workers received two doses, of the BNT162b2 vaccine. In previously infected health-care workers, the median time from previous infection to vaccination was 268 days (IQR 232-285). At 28 days (IQR 27-33) after a single dose, the spike-specific T-cell response measured in fresh peripheral blood mononuclear cells (PBMCs) was higher in previously infected (n=76) than in infection-naive (n=45) health-care workers (median 284 [IQR 150-461] vs 55 [IQR 24-132] spot-forming units [SFUs] per 106 PBMCs; p<0·0001). With cryopreserved PBMCs, the T-cell response in previously infected individuals (n=52) after one vaccine dose was equivalent to that of infection-naive individuals (n=19) after receiving two vaccine doses (median 152 [IQR 119-275] vs 162 [104-258] SFUs/106 PBMCs; p=1·00). Anti-spike IgG antibody responses following a single dose in 142 previously infected health-care workers (median 270â373 [IQR 203â461-535â188] antibody units [AU] per mL) were higher than in 111 infection-naive health-care workers following one dose (35â001 [17â099-55â341] AU/mL; p<0·0001) and higher than in 25 infection-naive individuals given two doses (180â904 [108â221-242â467] AU/mL; p<0·0001). INTERPRETATION: A single dose of the BNT162b2 vaccine is likely to provide greater protection against SARS-CoV-2 infection in individuals with previous SARS-CoV-2 infection, than in SARS-CoV-2-naive individuals, including against variants of concern. Future studies should determine the additional benefit of a second dose on the magnitude and durability of immune responses in individuals vaccinated following infection, alongside evaluation of the impact of extending the interval between vaccine doses. FUNDING: UK Department of Health and Social Care, and UK Coronavirus Immunology Consortium.
Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Leukocytes, Mononuclear , Prospective Studies , T-Lymphocytes , United Kingdom/epidemiology , Vaccines, Synthetic , mRNA VaccinesABSTRACT
INTRODUCTION: Understanding the effectiveness and durability of protection against SARS-CoV-2 infection conferred by previous infection and COVID-19 is essential to inform ongoing management of the pandemic. This study aims to determine whether prior SARS-CoV-2 infection or COVID-19 vaccination in healthcare workers protects against future infection. METHODS AND ANALYSIS: This is a prospective cohort study design in staff members working in hospitals in the UK. At enrolment, participants are allocated into cohorts, positive or naïve, dependent on their prior SARS-CoV-2 infection status, as measured by standardised SARS-CoV-2 antibody testing on all baseline serum samples and previous SARS-CoV-2 test results. Participants undergo monthly antibody testing and fortnightly viral RNA testing during follow-up and based on these results may move between cohorts. Any results from testing undertaken for other reasons (eg, symptoms, contact tracing) or prior to study entry will also be captured. Individuals complete enrolment and fortnightly questionnaires on exposures, symptoms and vaccination. Follow-up is 12 months from study entry, with an option to extend follow-up to 24 months.The primary outcome of interest is infection with SARS-CoV-2 after previous SARS-CoV-2 infection or COVID-19 vaccination during the study period. Secondary outcomes include incidence and prevalence (both RNA and antibody) of SARS-CoV-2, viral genomics, viral culture, symptom history and antibody/neutralising antibody titres. ETHICS AND DISSEMINATION: The study was approved by the Berkshire Research Ethics Committee, Health Research Authority (IRAS ID 284460, REC reference 20/SC/0230) on 22 May 2020; the vaccine amendment was approved on 12 January 2021. Participants gave informed consent before taking part in the study.Regular reports to national and international expert advisory groups and peer-reviewed publications ensure timely dissemination of findings to inform decision making. TRIAL REGISTRATION NUMBER: ISRCTN11041050.
Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Health Personnel , Humans , Incidence , Multicenter Studies as Topic , Prospective Studies , RNA, Viral , Reinfection , SARS-CoV-2 , United Kingdom/epidemiology , VaccinationABSTRACT
BackgroundThe emergence of the SARS-CoV-2 Alpha variant in England coincided with a rapid increase in the number of PCR-confirmed COVID-19 cases in areas where the variant was concentrated.AimOur aim was to assess whether infection with Alpha was associated with more severe clinical outcomes than the wild type.MethodsLaboratory-confirmed infections with genomically sequenced SARS-CoV-2 Alpha and wild type between October and December 2020 were linked to routine healthcare and surveillance datasets. We conducted two statistical analyses to compare the risk of hospital admission and death within 28 days of testing between Alpha and wild-type infections: a matched cohort study and an adjusted Cox proportional hazards model. We assessed differences in disease severity by comparing hospital admission and mortality, including length of hospitalisation and time to death.ResultsOf 63,609 COVID-19 cases sequenced in England between October and December 2020, 6,038 had the Alpha variant. In the matched cohort analysis, we matched 2,821 cases with Alpha to 2,821 to cases with wild type. In the time-to-event analysis, we observed a 34% increased risk in hospitalisation associated with Alpha compared with wild type, but no significant difference in the risk of mortality.ConclusionWe found evidence of increased risk of hospitalisation after adjusting for key confounders, suggesting increased infection severity associated with the Alpha variant. Rapid assessments of the relative morbidity in terms of clinical outcomes and mortality associated with emerging SARS-CoV-2 variants compared with dominant variants are required to assess overall impact of SARS-CoV-2 mutations.
Subject(s)
COVID-19 , SARS-CoV-2 , Cohort Studies , England/epidemiology , Hospitalization , Hospitals , Humans , SARS-CoV-2/geneticsABSTRACT
BACKGROUND: A rapid increase in coronavirus disease 2019 (Covid-19) cases due to the omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 in highly vaccinated populations has aroused concerns about the effectiveness of current vaccines. METHODS: We used a test-negative case-control design to estimate vaccine effectiveness against symptomatic disease caused by the omicron and delta (B.1.617.2) variants in England. Vaccine effectiveness was calculated after primary immunization with two doses of BNT162b2 (Pfizer-BioNTech), ChAdOx1 nCoV-19 (AstraZeneca), or mRNA-1273 (Moderna) vaccine and after a booster dose of BNT162b2, ChAdOx1 nCoV-19, or mRNA-1273. RESULTS: Between November 27, 2021, and January 12, 2022, a total of 886,774 eligible persons infected with the omicron variant, 204,154 eligible persons infected with the delta variant, and 1,572,621 eligible test-negative controls were identified. At all time points investigated and for all combinations of primary course and booster vaccines, vaccine effectiveness against symptomatic disease was higher for the delta variant than for the omicron variant. No effect against the omicron variant was noted from 20 weeks after two ChAdOx1 nCoV-19 doses, whereas vaccine effectiveness after two BNT162b2 doses was 65.5% (95% confidence interval [CI], 63.9 to 67.0) at 2 to 4 weeks, dropping to 8.8% (95% CI, 7.0 to 10.5) at 25 or more weeks. Among ChAdOx1 nCoV-19 primary course recipients, vaccine effectiveness increased to 62.4% (95% CI, 61.8 to 63.0) at 2 to 4 weeks after a BNT162b2 booster before decreasing to 39.6% (95% CI, 38.0 to 41.1) at 10 or more weeks. Among BNT162b2 primary course recipients, vaccine effectiveness increased to 67.2% (95% CI, 66.5 to 67.8) at 2 to 4 weeks after a BNT162b2 booster before declining to 45.7% (95% CI, 44.7 to 46.7) at 10 or more weeks. Vaccine effectiveness after a ChAdOx1 nCoV-19 primary course increased to 70.1% (95% CI, 69.5 to 70.7) at 2 to 4 weeks after an mRNA-1273 booster and decreased to 60.9% (95% CI, 59.7 to 62.1) at 5 to 9 weeks. After a BNT162b2 primary course, the mRNA-1273 booster increased vaccine effectiveness to 73.9% (95% CI, 73.1 to 74.6) at 2 to 4 weeks; vaccine effectiveness fell to 64.4% (95% CI, 62.6 to 66.1) at 5 to 9 weeks. CONCLUSIONS: Primary immunization with two doses of ChAdOx1 nCoV-19 or BNT162b2 vaccine provided limited protection against symptomatic disease caused by the omicron variant. A BNT162b2 or mRNA-1273 booster after either the ChAdOx1 nCoV-19 or BNT162b2 primary course substantially increased protection, but that protection waned over time. (Funded by the U.K. Health Security Agency.).
Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccine Efficacy , 2019-nCoV Vaccine mRNA-1273/therapeutic use , BNT162 Vaccine/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Case-Control Studies , ChAdOx1 nCoV-19/therapeutic use , Humans , Immunization, Secondary/adverse effects , SARS-CoV-2/geneticsABSTRACT
A subset of events within the UK Government Events Research Programme (ERP), developed to examine the risk of transmission of COVID-19 from attendance at events, was examined to explore the public health impact of holding mass sporting events. We used contact tracing data routinely collected through telephone interviews and online questionnaires, to describe the potential public health impact of the large sporting and cultural events on potential transmission and incidence of COVID-19. Data from the EURO 2020 matches hosted at Wembley identified very high numbers of individuals who tested positive for COVID-19 and were traced through NHS Test & Trace. This included both individuals who were potentially infectious (3036) and those who acquired their infection during the time of the Final (6376). This is in contrast with the All England Lawn Tennis Championships at Wimbledon, where there were similar number of spectators and venue capacity but there were lower total numbers of potentially infectious cases (299) and potentially acquired cases (582). While the infections associated with the EURO 2020 event may be attributed to a set of socio-cultural circumstances which are unlikely to be replicated for the forthcoming sporting season, other aspects may be important to consider including mitigations for spectators to consider such as face coverings when travelling to and from events, minimising crowding in poorly ventilated indoor spaces such as bars and pubs where people may congregate to watch events, and reducing the risk of aerosol exposure through requesting that individuals avoid shouting and chanting in large groups in enclosed spaces.
Subject(s)
COVID-19/epidemiology , Mass Gatherings , Public Health , Sports , COVID-19/transmission , Contact Tracing , England/epidemiology , Humans , SARS-CoV-2ABSTRACT
BACKGROUND: Natural and vaccine-induced immunity will play a key role in controlling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. SARS-CoV-2 variants have the potential to evade natural and vaccine-induced immunity. METHODS: In a longitudinal cohort study of healthcare workers (HCWs) in Oxfordshire, United Kingdom, we investigated the protection from symptomatic and asymptomatic polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection conferred by vaccination (Pfizer-BioNTech BNT162b2, Oxford-AstraZeneca ChAdOx1 nCOV-19) and prior infection (determined using anti-spike antibody status), using Poisson regression adjusted for age, sex, temporal changes in incidence and role. We estimated protection conferred after 1 versus 2 vaccinations and from infections with the B.1.1.7 variant identified using whole genome sequencing. RESULTS: In total, 13 109 HCWs participated; 8285 received the Pfizer-BioNTech vaccine (1407 two doses), and 2738 the Oxford-AstraZeneca vaccine (49 two doses). Compared to unvaccinated seronegative HCWs, natural immunity and 2 vaccination doses provided similar protection against symptomatic infection: no HCW vaccinated twice had symptomatic infection, and incidence was 98% lower in seropositive HCWs (adjusted incidence rate ratio 0.02 [95% confidence interval {CI}â <â .01-.18]). Two vaccine doses or seropositivity reduced the incidence of any PCR-positive result with or without symptoms by 90% (0.10 [95% CI .02-.38]) and 85% (0.15 [95% CI .08-.26]), respectively. Single-dose vaccination reduced the incidence of symptomatic infection by 67% (0.33 [95% CI .21-.52]) and any PCR-positive result by 64% (0.36 [95% CI .26-.50]). There was no evidence of differences in immunity induced by natural infection and vaccination for infections with S-gene target failure and B.1.1.7. CONCLUSIONS: Natural infection resulting in detectable anti-spike antibodies and 2 vaccine doses both provide robust protection against SARS-CoV-2 infection, including against the B.1.1.7 variant.
Subject(s)
COVID-19 , SARS-CoV-2 , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Cohort Studies , Health Personnel , Humans , Immunoglobulins , Incidence , Longitudinal Studies , VaccinationABSTRACT
BACKGROUND: The duration and effectiveness of immunity from infection with and vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are relevant to pandemic policy interventions, including the timing of vaccine boosters. METHODS: We investigated the duration and effectiveness of immunity in a prospective cohort of asymptomatic health care workers in the United Kingdom who underwent routine polymerase-chain-reaction (PCR) testing. Vaccine effectiveness (≤10 months after the first dose of vaccine) and infection-acquired immunity were assessed by comparing the time to PCR-confirmed infection in vaccinated persons with that in unvaccinated persons, stratified according to previous infection status. We used a Cox regression model with adjustment for previous SARS-CoV-2 infection status, vaccine type and dosing interval, demographic characteristics, and workplace exposure to SARS-CoV-2. RESULTS: Of 35,768 participants, 27% (9488) had a previous SARS-CoV-2 infection. Vaccine coverage was high: 95% of the participants had received two doses (78% had received BNT162b2 vaccine [Pfizer-BioNTech] with a long interval between doses, 9% BNT162b2 vaccine with a short interval between doses, and 8% ChAdOx1 nCoV-19 vaccine [AstraZeneca]). Between December 7, 2020, and September 21, 2021, a total of 2747 primary infections and 210 reinfections were observed. Among previously uninfected participants who received long-interval BNT162b2 vaccine, adjusted vaccine effectiveness decreased from 85% (95% confidence interval [CI], 72 to 92) 14 to 73 days after the second dose to 51% (95% CI, 22 to 69) at a median of 201 days (interquartile range, 197 to 205) after the second dose; this effectiveness did not differ significantly between the long-interval and short-interval BNT162b2 vaccine recipients. At 14 to 73 days after the second dose, adjusted vaccine effectiveness among ChAdOx1 nCoV-19 vaccine recipients was 58% (95% CI, 23 to 77) - considerably lower than that among BNT162b2 vaccine recipients. Infection-acquired immunity waned after 1 year in unvaccinated participants but remained consistently higher than 90% in those who were subsequently vaccinated, even in persons infected more than 18 months previously. CONCLUSIONS: Two doses of BNT162b2 vaccine were associated with high short-term protection against SARS-CoV-2 infection; this protection waned considerably after 6 months. Infection-acquired immunity boosted with vaccination remained high more than 1 year after infection. (Funded by the U.K. Health Security Agency and others; ISRCTN Registry number, ISRCTN11041050.).
Subject(s)
Adaptive Immunity , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Adaptive Immunity/immunology , Asymptomatic Diseases , BNT162 Vaccine/therapeutic use , COVID-19/diagnosis , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , ChAdOx1 nCoV-19/therapeutic use , Health Personnel , Humans , Prospective Studies , United Kingdom , Vaccination/methods , Vaccine EfficacyABSTRACT
BACKGROUND: How severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity varies with viral load is incompletely understood. Whether rapid point-of-care antigen lateral flow devices (LFDs) detect most potential transmission sources despite imperfect clinical sensitivity is unknown. METHODS: We combined SARS-CoV-2 testing and contact tracing data from England between 1 September 2020 and 28 February 2021. We used multivariable logistic regression to investigate relationships between polymerase chain reaction (PCR)-confirmed infection in contacts of community-diagnosed cases and index case viral load, S gene target failure (proxy for B.1.1.7 infection), demographics, SARS-CoV-2 incidence, social deprivation, and contact event type. We used LFD performance to simulate the proportion of cases with a PCR-positive contact expected to be detected using 1 of 4 LFDs. RESULTS: In total, 231 498/2 474 066 (9%) contacts of 1 064 004 index cases tested PCR-positive. PCR-positive results in contacts independently increased with higher case viral loads (lower cycle threshold [Ct] values), for example, 11.7% (95% confidence interval [CI] 11.5-12.0%) at Ct = 15 and 4.5% (95% CI 4.4-4.6%) at Ct = 30. B.1.1.7 infection increased PCR-positive results by ~50%, (eg, 1.55-fold, 95% CI 1.49-1.61, at Ct = 20). PCR-positive results were most common in household contacts (at Ct = 20.1, 8.7% [95% CI 8.6-8.9%]), followed by household visitors (7.1% [95% CI 6.8-7.3%]), contacts at events/activities (5.2% [95% CI 4.9-5.4%]), work/education (4.6% [95% CI 4.4-4.8%]), and least common after outdoor contact (2.9% [95% CI 2.3-3.8%]). Contacts of children were the least likely to test positive, particularly following contact outdoors or at work/education. The most and least sensitive LFDs would detect 89.5% (95% CI 89.4-89.6%) and 83.0% (95% CI 82.8-83.1%) of cases with PCR-positive contacts, respectively. CONCLUSIONS: SARS-CoV-2 infectivity varies by case viral load, contact event type, and age. Those with high viral loads are the most infectious. B.1.1.7 increased transmission by ~50%. The best performing LFDs detect most infectious cases.
Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Child , Family Characteristics , Humans , Viral LoadABSTRACT
BACKGROUND: Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (Covid-19), have been used since December 2020 in the United Kingdom. Real-world data have shown the vaccines to be highly effective against Covid-19 and related severe disease and death. Vaccine effectiveness may wane over time since the receipt of the second dose of the ChAdOx1-S (ChAdOx1 nCoV-19) and BNT162b2 vaccines. METHODS: We used a test-negative case-control design to estimate vaccine effectiveness against symptomatic Covid-19 and related hospitalization and death in England. Effectiveness of the ChAdOx1-S and BNT162b2 vaccines was assessed according to participant age and status with regard to coexisting conditions and over time since receipt of the second vaccine dose to investigate waning of effectiveness separately for the B.1.1.7 (alpha) and B.1.617.2 (delta) variants. RESULTS: Vaccine effectiveness against symptomatic Covid-19 with the delta variant peaked in the early weeks after receipt of the second dose and then decreased by 20 weeks to 44.3% (95% confidence interval [CI], 43.2 to 45.4) with the ChAdOx1-S vaccine and to 66.3% (95% CI, 65.7 to 66.9) with the BNT162b2 vaccine. Waning of vaccine effectiveness was greater in persons 65 years of age or older than in those 40 to 64 years of age. At 20 weeks or more after vaccination, vaccine effectiveness decreased less against both hospitalization, to 80.0% (95% CI, 76.8 to 82.7) with the ChAdOx1-S vaccine and 91.7% (95% CI, 90.2 to 93.0) with the BNT162b2 vaccine, and death, to 84.8% (95% CI, 76.2 to 90.3) and 91.9% (95% CI, 88.5 to 94.3), respectively. Greater waning in vaccine effectiveness against hospitalization was observed in persons 65 years of age or older in a clinically extremely vulnerable group and in persons 40 to 64 years of age with underlying medical conditions than in healthy adults. CONCLUSIONS: We observed limited waning in vaccine effectiveness against Covid-19-related hospitalization and death at 20 weeks or more after vaccination with two doses of the ChAdOx1-S or BNT162b2 vaccine. Waning was greater in older adults and in those in a clinical risk group.
Subject(s)
BNT162 Vaccine , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Vaccine Efficacy , Adolescent , Adult , Age Factors , Aged , COVID-19/mortality , COVID-19/virology , Case-Control Studies , Female , Hospitalization/statistics & numerical data , Humans , Immunization, Secondary , Immunogenicity, Vaccine , Male , Middle Aged , Patient Acuity , Risk Factors , SARS-CoV-2 , Time Factors , United Kingdom/epidemiologySubject(s)
COVID-19 , Coinfection , Critical Care , Hospitals , Humans , Intensive Care Units , Length of Stay , Retrospective Studies , State MedicineABSTRACT
BACKGROUND: Antibacterial prescribing for respiratory tract infections (RTIs) accounts for almost half of all prescribing in primary care. Nearly a quarter of antibacterial prescribing in primary care is estimated to be inappropriate, the greatest being for RTIs. The COVID-19 pandemic has changed the provision of healthcare services and impacted the levels of antibacterials prescribed. OBJECTIVES: To describe the changes in community antibacterial prescribing for RTIs in winter 2020-21 in England. METHODS: RTI antibacterial prescribing was measured in prescription items/1000 population for primary care from January 2014 and in DDDs/1000 population/day for the totality of RTI prescribing [combined with Accident & Emergency (A&E) in secondary care], from January 2016 to February 2021. Trends were assessed using negative binomial regression and seasonally adjusted interrupted time-series analysis. RESULTS: Antibacterials prescribed for RTIs reduced by a further 12.4% per season compared with pre-COVID (Pâ<â0.001). In winter 2020-21, RTI prescriptions almost halved compared with the previous winter in 2019-20 (Pâ<â0.001). The trend observed for total RTI prescribing (primary care with A&E) was similar to that observed in the community alone. CONCLUSIONS: During COVID-19, RTI prescribing reduced in the community and the expected rise in winter was not seen in 2020-21. We found no evidence that RTI prescribing shifted from primary care to A&E in secondary care. The most likely explanation is a decrease in RTIs and presentations to primary care associated with national prevention measures for COVID-19.