Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Vaccine ; 2022.
Article in English | ScienceDirect | ID: covidwho-1821522

ABSTRACT

We conducted preclinical studies in mice using a yeast-produced SARS-CoV-2 RBD subunit vaccine candidate formulated with aluminum hydroxide (alum) and CpG deoxynucleotides. This formulation is equivalent to the CorbevaxTM vaccine that recently received emergency use authorization by the Drugs Controller General ofIndia. We compared the immune response of mice vaccinated with RBD/alum to mice vaccinated with RBD/alum+CpG. We also evaluated mice immunized with RBD/alum+CpG and boosted with RBD/alum. Mice were immunized twice intramuscularly at a 21-day interval. Compared to two doses of the /alum formulation, the RBD/alum+CpG vaccine induced a stronger and more balanced Th1/Th2 cellular immune response, with high levels of neutralizing antibodies against the original Wuhan isolate of SARS-CoV-2 as well as the B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 and (Delta) variants. Neutralizing antibody titers against the B.1.1.529 (BA.1, Omicron) variant exceeded those in human convalescent plasma after Wuhan infection but were lower than against the other variants. Interestingly, the second dose did not benefit from the addition of CpG, possibly allowing dose-sparing of the adjuvant in the future. The data reported here reinforces that the RBD/alum+CpG vaccine formulation is suitable for inducing broadly neutralizing antibodies against SARS-CoV-2 including variants of concern.

3.
Lancet Public Health ; 7(4): e356-e365, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1730183

ABSTRACT

BACKGROUND: Face mask wearing has been an important part of the response to the COVID-19 pandemic. As vaccination coverage progresses in countries, relaxation of such practices is increasing. Subsequent COVID-19 surges have raised the questions of whether face masks should be encouraged or required and for how long. Here, we aim to assess the value of maintaining face masks use indoors according to different COVID-19 vaccination coverage levels in the USA. METHODS: In this computational simulation-model study, we developed and used a Monte Carlo simulation model representing the US population and SARS-CoV-2 spread. Simulation experiments compared what would happen if face masks were used versus not used until given final vaccination coverages were achieved. Different scenarios varied the target vaccination coverage (70-90%), the date these coverages were achieved (Jan 1, 2022, to July 1, 2022), and the date the population discontinued wearing face masks. FINDINGS: Simulation experiments revealed that maintaining face mask use (at the coverage seen in the USA from March, 2020, to July, 2020) until target vaccination coverages were achieved was cost-effective and in many cases cost saving from both the societal and third-party payer perspectives across nearly all scenarios explored. Face mask use was estimated to be cost-effective and usually cost saving when the cost of face masks per person per day was ≤US$1·25. In all scenarios, it was estimated to be cost-effective to maintain face mask use for about 2-10 weeks beyond the date that target vaccination coverage (70-90%) was achieved, with this added duration being longer when the target coverage was achieved during winter versus summer. Factors that might increase the transmissibility of the virus (eg, emergence of the delta [B.1.617.2] and omicron [B.1.1.529] variants), or decrease vaccine effectiveness (eg, waning immunity or escape variants), or increase social interactions among certain segments of the population, only increased the cost savings or cost-effectiveness provided by maintaining face mask use. INTERPRETATION: Our study provides strong support for maintaining face mask use until and a short time after achieving various final vaccination coverage levels, given that maintaining face mask use can be not just cost-effective, but even cost saving. The emergence of the omicron variant and the prospect of future variants that might be more transmissible and reduce vaccine effectiveness only increases the value of face masks. FUNDING: The Agency for Healthcare Research and Quality, the National Institute of General Medical Sciences, the National Science Foundation, the National Center for Advancing Translational Sciences, and the City University of New York.


Subject(s)
COVID-19 , Vaccination Coverage , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Masks , Pandemics/prevention & control , SARS-CoV-2
4.
Lancet Reg Health Am ; 6: 100147, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1587087

ABSTRACT

Background: The fourth wave of COVID-19 pandemic peaked in the US at 160,000 daily cases, concentrated primarily in southern states. As the Delta variant has continued to spread, we evaluated the impact of accelerated vaccination on reducing hospitalization and deaths across northeastern and southern regions of the US census divisions. Methods: We used an age-stratified agent-based model of COVID-19 to simulate outbreaks in all states within two U.S. regions. The model was calibrated using reported incidence in each state from October 1, 2020 to August 31, 2021, and parameterized with characteristics of the circulating SARS-CoV-2 variants and state-specific daily vaccination rate. We then projected the number of infections, hospitalizations, and deaths that would be averted between September 2021 and the end of March 2022 if the states increased their daily vaccination rate by 20 or 50% compared to maintaining the status quo pace observed during August 2021. Findings: A 50% increase in daily vaccine doses administered to previously unvaccinated individuals is projected to prevent a total of 30,727 hospitalizations and 11,937 deaths in the two regions between September 2021 and the end of March 2022. Southern states were projected to have a higher weighted average number of hospitalizations averted (18.8) and lives saved (8.3) per 100,000 population, compared to the weighted average of hospitalizations (12.4) and deaths (2.7) averted in northeastern states. On a per capita basis, a 50% increase in daily vaccinations is expected to avert the most hospitalizations in Kentucky (56.7 hospitalizations per 100,000 averted with 95% CrI: 45.56 - 69.9) and prevent the most deaths in Mississippi, (22.1 deaths per 100,000 population prevented with 95% CrI: 18.0 - 26.9). Interpretation: Accelerating progress to population-level immunity by raising the daily pace of vaccination would prevent substantial hospitalizations and deaths in the US, even in those states that have passed a Delta-driven peak in infections. Funding: This study was supported by The Commonwealth Fund. SMM acknowledges the support from the Canadian Institutes of Health Research [OV4 - 170643, COVID-19 Rapid Research] and the Natural Sciences and Engineering Research Council of Canada, Emerging Infectious Disease Modelling, MfPH grant. MCF acknowledges support from the National Institutes of Health (5 K01 AI141576).

5.
Lancet ; 398(10317): 2186-2192, 2021 12 11.
Article in English | MEDLINE | ID: covidwho-1521624

ABSTRACT

Since the first case of COVID-19 was identified in the USA in January, 2020, over 46 million people in the country have tested positive for SARS-CoV-2 infection. Several COVID-19 vaccines have received emergency use authorisations from the US Food and Drug Administration, with the Pfizer-BioNTech vaccine receiving full approval on Aug 23, 2021. When paired with masking, physical distancing, and ventilation, COVID-19 vaccines are the best intervention to sustainably control the pandemic. However, surveys have consistently found that a sizeable minority of US residents do not plan to get a COVID-19 vaccine. The most severe consequence of an inadequate uptake of COVID-19 vaccines has been sustained community transmission (including of the delta [B.1.617.2] variant, a surge of which began in July, 2021). Exacerbating the direct impact of the virus, a low uptake of COVID-19 vaccines will prolong the social and economic repercussions of the pandemic on families and communities, especially low-income and minority ethnic groups, into 2022, or even longer. The scale and challenges of the COVID-19 vaccination campaign are unprecedented. Therefore, through a series of recommendations, we present a coordinated, evidence-based education, communication, and behavioural intervention strategy that is likely to improve the success of COVID-19 vaccine programmes across the USA.


Subject(s)
Behavior Therapy , COVID-19 Vaccines , COVID-19/transmission , Communication , Immunization Programs , SARS-CoV-2 , Humans , Politics , United States , Vaccination Refusal/psychology
7.
Protein Expr Purif ; 190: 106003, 2022 02.
Article in English | MEDLINE | ID: covidwho-1474960

ABSTRACT

SARS-CoV-2 protein subunit vaccines are currently being evaluated by multiple manufacturers to address the global vaccine equity gap, and need for low-cost, easy to scale, safe, and effective COVID-19 vaccines. In this paper, we report on the generation of the receptor-binding domain RBD203-N1 yeast expression construct, which produces a recombinant protein capable of eliciting a robust immune response and protection in mice against SARS-CoV-2 challenge infections. The RBD203-N1 antigen was expressed in the yeast Pichia pastoris X33. After fermentation at the 5 L scale, the protein was purified by hydrophobic interaction chromatography followed by anion exchange chromatography. The purified protein was characterized biophysically and biochemically, and after its formulation, the immunogenicity was evaluated in mice. Sera were evaluated for their efficacy using a SARS-CoV-2 pseudovirus assay. The RBD203-N1 protein was expressed with a yield of 492.9 ± 3.0 mg/L of fermentation supernatant. A two-step purification process produced a >96% pure protein with a recovery rate of 55 ± 3% (total yield of purified protein: 270.5 ± 13.2 mg/L fermentation supernatant). The protein was characterized to be a homogeneous monomer that showed a well-defined secondary structure, was thermally stable, antigenic, and when adjuvanted on Alhydrogel in the presence of CpG it was immunogenic and induced high levels of neutralizing antibodies against SARS-CoV-2 pseudovirus. The characteristics of the RBD203-N1 protein-based vaccine show that this candidate is another well suited RBD-based construct for technology transfer to manufacturing entities and feasibility of transition into the clinic to evaluate its immunogenicity and safety in humans.


Subject(s)
COVID-19 Vaccines , Gene Expression , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , COVID-19 Vaccines/pharmacology , Humans , Mice , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/pharmacology
8.
Annu Rev Med ; 73: 55-64, 2022 01 27.
Article in English | MEDLINE | ID: covidwho-1463046

ABSTRACT

The rapid development and deployment of mRNA and adenovirus-vectored vaccines against coronavirus disease 2019 (COVID-19) continue to astound the global scientific community, but these vaccine platforms and production approaches have still not achieved global COVID-19 vaccine equity. Immunizing the billions of people at risk for COVID-19 in the world's low- and middle-income countries (LMICs) still relies on the availability of vaccines produced and scaled through traditional technology approaches. Vaccines based on whole inactivated virus (WIV) and protein-based platforms, as well as protein particle-based vaccines, are the most produced by LMIC vaccine manufacturing strategies. Three major WIV vaccines are beginning to be distributed widely. Several protein-based and protein particle-based vaccines are advancing with promising results. Overall, these vaccines are exhibiting excellent safety profiles and in some instances have shown their potential to induce high levels of virus neutralizing antibodies and T cell responses (and protection) both in nonhuman primates and in early studies in humans. There is an urgent need to continue accelerating these vaccines for LMICs in time to fully vaccinate these populations by the end of 2022 at the latest. Achieving these goals would also serve as an important reminder that we must continue to maintain expertise in producing multiple vaccine technologies, rather than relying on any individual platform.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , SARS-CoV-2 , Vaccines, Inactivated
9.
Clin Microbiol Infect ; 27(12): 1762-1771, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1433091

ABSTRACT

BACKGROUND: With limited vaccine supplies, an informed position on the status of SARS-CoV-2 infection in people can assist the prioritization of vaccine deployment. OBJECTIVES: We performed a systematic review and meta-analysis to estimate the global and regional SARS-CoV-2 seroprevalences around the world. DATA SOURCES: We systematically searched peer-reviewed databases (PubMed, Embase and Scopus), and preprint servers (medRxiv, bioRxiv and SSRN) for articles published between 1 January 2020 and 30 March 2021. STUDY ELIGIBILITY CRITERIA: Population-based studies reporting the SARS-CoV-2 seroprevalence in the general population were included. PARTICIPANTS: People of different age groups, occupations, educational levels, ethnic backgrounds and socio-economic status from the general population. INTERVENTIONS: There were no interventions. METHODS: We used the random-effects meta-analyses and empirical Bayesian method to estimate the pooled seroprevalence and conducted subgroup and meta-regression analyses to explore potential sources of heterogeneity as well as the relationship between seroprevalence and socio-demographics. RESULTS: We identified 241 eligible studies involving 6.3 million individuals from 60 countries. The global pooled seroprevalence was 9.47% (95% CI 8.99-9.95%), although the heterogeneity among studies was significant (I2 = 99.9%). We estimated that ∼738 million people had been infected with SARS-CoV-2 (as of December 2020). Highest and lowest seroprevalences were recorded in Central and Southern Asia (22.91%, 19.11-26.72%) and Eastern and South-eastern Asia (1.62%, 1.31-1.95%), respectively. Seroprevalence estimates were higher in males, persons aged 20-50 years, in minority ethnic groups living in countries or regions with low income and human development indices. CONCLUSIONS: The present study indicates that the majority of the world's human population was still highly susceptible to SARS-CoV-2 infection in mid-2021, emphasizing the need for vaccine deployment to vulnerable groups of people, particularly in developing countries, and for the implementation of enhanced preventive measures until 'herd immunity' to SARS-CoV-2 has developed.


Subject(s)
COVID-19 , SARS-CoV-2 , Seroepidemiologic Studies , Bayes Theorem , COVID-19/epidemiology , Global Health , Humans
10.
J Infect Dis ; 224(6): 938-948, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1429242

ABSTRACT

BACKGROUND: With multiple coronavirus disease 2019 (COVID-19) vaccines available, understanding the epidemiologic, clinical, and economic value of increasing coverage levels and expediting vaccination is important. METHODS: We developed a computational model (transmission and age-stratified clinical and economics outcome model) representing the United States population, COVID-19 coronavirus spread (February 2020-December 2022), and vaccination to determine the impact of increasing coverage and expediting time to achieve coverage. RESULTS: When achieving a given vaccination coverage in 270 days (70% vaccine efficacy), every 1% increase in coverage can avert an average of 876 800 (217 000-2 398 000) cases, varying with the number of people already vaccinated. For example, each 1% increase between 40% and 50% coverage can prevent 1.5 million cases, 56 240 hospitalizations, and 6660 deaths; gain 77 590 quality-adjusted life-years (QALYs); and save $602.8 million in direct medical costs and $1.3 billion in productivity losses. Expediting to 180 days could save an additional 5.8 million cases, 215 790 hospitalizations, 26 370 deaths, 206 520 QALYs, $3.5 billion in direct medical costs, and $4.3 billion in productivity losses. CONCLUSIONS: Our study quantifies the potential value of decreasing vaccine hesitancy and increasing vaccination coverage and how this value may decrease with the time it takes to achieve coverage, emphasizing the need to reach high coverage levels as soon as possible, especially before the fall/winter.


Subject(s)
COVID-19 Vaccines/economics , Cost-Benefit Analysis , Vaccination/economics , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Humans , Models, Economic , SARS-CoV-2 , United States , Vaccination/statistics & numerical data
13.
Sci Rep ; 11(1): 17626, 2021 09 02.
Article in English | MEDLINE | ID: covidwho-1392887

ABSTRACT

Antigen identification is an important step in the vaccine development process. Computational approaches including deep learning systems can play an important role in the identification of vaccine targets using genomic and proteomic information. Here, we present a new computational system to discover and analyse novel vaccine targets leading to the design of a multi-epitope subunit vaccine candidate. The system incorporates reverse vaccinology and immuno-informatics tools to screen genomic and proteomic datasets of several pathogens such as Trypanosoma cruzi, Plasmodium falciparum, and Vibrio cholerae to identify potential vaccine candidates (PVC). Further, as a case study, we performed a detailed analysis of the genomic and proteomic dataset of T. cruzi (CL Brenner and Y strain) to shortlist eight proteins as possible vaccine antigen candidates using properties such as secretory/surface-exposed nature, low transmembrane helix (< 2), essentiality, virulence, antigenic, and non-homology with host/gut flora proteins. Subsequently, highly antigenic and immunogenic MHC class I, MHC class II and B cell epitopes were extracted from top-ranking vaccine targets. The designed vaccine construct containing 24 epitopes, 3 adjuvants, and 4 linkers was analysed for its physicochemical properties using different tools, including docking analysis. Immunological simulation studies suggested significant levels of T-helper, T-cytotoxic cells, and IgG1 will be elicited upon administration of such a putative multi-epitope vaccine construct. The vaccine construct is predicted to be soluble, stable, non-allergenic, non-toxic, and to offer cross-protection against related Trypanosoma species and strains. Further, studies are required to validate safety and immunogenicity of the vaccine.


Subject(s)
Computational Biology/methods , Vaccines/immunology , Vaccinology/methods , Bacterial Vaccines/immunology , Chagas Disease/immunology , Chagas Disease/prevention & control , Cholera/immunology , Cholera/prevention & control , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Protozoan Vaccines/immunology , Trypanosoma cruzi/immunology , Vibrio cholerae/immunology
15.
Circulation ; 144(6): 471-484, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1365256

ABSTRACT

Myocarditis has been recognized as a rare complication of coronavirus disease 2019 (COVID-19) mRNA vaccinations, especially in young adult and adolescent males. According to the US Centers for Disease Control and Prevention, myocarditis/pericarditis rates are ≈12.6 cases per million doses of second-dose mRNA vaccine among individuals 12 to 39 years of age. In reported cases, patients with myocarditis invariably presented with chest pain, usually 2 to 3 days after a second dose of mRNA vaccination, and had elevated cardiac troponin levels. ECG was abnormal with ST elevations in most, and cardiac MRI was suggestive of myocarditis in all tested patients. There was no evidence of acute COVID-19 or other viral infections. In 1 case, a cardiomyopathy gene panel was negative, but autoantibody levels against certain self-antigens and frequency of natural killer cells were increased. Although the mechanisms for development of myocarditis are not clear, molecular mimicry between the spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and self-antigens, trigger of preexisting dysregulated immune pathways in certain individuals, immune response to mRNA, and activation of immunologic pathways, and dysregulated cytokine expression have been proposed. The reasons for male predominance in myocarditis cases are unknown, but possible explanations relate to sex hormone differences in immune response and myocarditis, and also underdiagnosis of cardiac disease in women. Almost all patients had resolution of symptoms and signs and improvement in diagnostic markers and imaging with or without treatment. Despite rare cases of myocarditis, the benefit-risk assessment for COVID-19 vaccination shows a favorable balance for all age and sex groups; therefore, COVID-19 vaccination is recommended for everyone ≥12 years of age.


Subject(s)
Autoantigens/immunology , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Myocarditis/chemically induced , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Biomarkers , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Female , Humans , Male , Molecular Mimicry/immunology , Myocarditis/immunology , Sex Factors
16.
PLoS Negl Trop Dis ; 14(9): e0007956, 2020 09.
Article in English | MEDLINE | ID: covidwho-1339406

ABSTRACT

In 2018, the government of the Republic of Korea (ROK), South Korean life science companies, and a group of international funders led by the Bill & Melinda Gates Foundation launched a new and innovative funding agency to support neglected-disease research and development (R&D). The new venture is known as the Research Investment for Global Health Technology (RIGHT) Fund.


Subject(s)
Biomedical Technology/economics , Neglected Diseases/prevention & control , Biomedical Technology/organization & administration , Biomedical Technology/trends , Financial Management , Global Health/economics , Humans , Neglected Diseases/economics , Neglected Diseases/epidemiology , Republic of Korea/epidemiology
17.
EClinicalMedicine ; 39: 101053, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1336375

ABSTRACT

A Lancet Commission for COVID-19 task force is shaping recommendations to achieve vaccine and therapeutics access, justice, and equity. This includes ensuring safety and effectiveness harmonized through robust systems of global pharmacovigilance and surveillance. Global production requires expanding support for development, manufacture, testing, and distribution of vaccines and therapeutics to low- and middle-income countries (LMICs). Global intellectual property rules must not stand in the way of research, production, technology transfer, or equitable access to essential health tools, and in context of pandemics to achieve increased manufacturing without discouraging innovation. Global governance around product quality requires channelling widely distributed vaccines through WHO prequalification (PQ)/emergency use listing (EUL) mechanisms and greater use of national regulatory authorities. A World Health Assembly (WHA) resolution would facilitate improvements and consistency in quality control and assurances. Global health systems require implementing steps to strengthen national systems for controlling COVID-19 and for influenza vaccinations for adults including pregnant and lactating women. A collaborative research network should strive to establish open access databases for bioinformatic analyses, together with programs directed at human capacity utilization and strengthening. Combating anti-science recognizes the urgency for countermeasures to address a global-wide disinformation movement dominating the internet and infiltrating parliaments and local governments.

18.
Int Health ; 13(5): 383-398, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1334223

ABSTRACT

When it emerged in late 2019, COVID-19 was carried via travelers to Germany, France and Italy, where freedom of movement accelerated its transmission throughout Europe. However, effective non-pharmaceutical interventions introduced by European governments led to containment of the rapid increase in cases within European nations. Electronic searches were performed to obtain the number of confirmed cases, incident rates and non-pharmaceutical government measures for each European country. The spread and impact of non-pharmaceutical interventions throughout Europe were assessed and visualized. Specifically, heatmaps were used to represent the number of confirmed cases and incident rates for each of the countries over time. In addition, maps were created showing the number of confirmed cases and incident rates in Europe on three different dates (15 March, 15 April and 15 May 2020), which allowed us to assess the geographic and temporal patterns of the disease.


Subject(s)
COVID-19 , Europe , France , Germany , Humans , SARS-CoV-2
19.
PLoS Biol ; 19(7): e3001369, 2021 07.
Article in English | MEDLINE | ID: covidwho-1329130

ABSTRACT

There is a troubling new expansion of antiscience aggression in the United States. It's arising from far-right extremism, including some elected members of the US Congress and conservative news outlets that target prominent biological scientists fighting the COVID-19 pandemic.


Subject(s)
Aggression , COVID-19/prevention & control , Research Personnel/statistics & numerical data , SARS-CoV-2/isolation & purification , Science/statistics & numerical data , Anti-Vaccination Movement/statistics & numerical data , Attitude to Health , COVID-19/epidemiology , COVID-19/virology , Humans , Pandemics/prevention & control , Politics , SARS-CoV-2/physiology , Science/trends , Social Media/statistics & numerical data , United States/epidemiology
20.
Circulation ; 144(6): 471-484, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1318235

ABSTRACT

Myocarditis has been recognized as a rare complication of coronavirus disease 2019 (COVID-19) mRNA vaccinations, especially in young adult and adolescent males. According to the US Centers for Disease Control and Prevention, myocarditis/pericarditis rates are ≈12.6 cases per million doses of second-dose mRNA vaccine among individuals 12 to 39 years of age. In reported cases, patients with myocarditis invariably presented with chest pain, usually 2 to 3 days after a second dose of mRNA vaccination, and had elevated cardiac troponin levels. ECG was abnormal with ST elevations in most, and cardiac MRI was suggestive of myocarditis in all tested patients. There was no evidence of acute COVID-19 or other viral infections. In 1 case, a cardiomyopathy gene panel was negative, but autoantibody levels against certain self-antigens and frequency of natural killer cells were increased. Although the mechanisms for development of myocarditis are not clear, molecular mimicry between the spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and self-antigens, trigger of preexisting dysregulated immune pathways in certain individuals, immune response to mRNA, and activation of immunologic pathways, and dysregulated cytokine expression have been proposed. The reasons for male predominance in myocarditis cases are unknown, but possible explanations relate to sex hormone differences in immune response and myocarditis, and also underdiagnosis of cardiac disease in women. Almost all patients had resolution of symptoms and signs and improvement in diagnostic markers and imaging with or without treatment. Despite rare cases of myocarditis, the benefit-risk assessment for COVID-19 vaccination shows a favorable balance for all age and sex groups; therefore, COVID-19 vaccination is recommended for everyone ≥12 years of age.


Subject(s)
Autoantigens/immunology , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Myocarditis/chemically induced , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Biomarkers , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Female , Humans , Male , Molecular Mimicry/immunology , Myocarditis/immunology , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL