Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
BMC Med Res Methodol ; 22(1): 35, 2022 01 30.
Article in English | MEDLINE | ID: covidwho-1699687

ABSTRACT

BACKGROUND: We investigated whether we could use influenza data to develop prediction models for COVID-19 to increase the speed at which prediction models can reliably be developed and validated early in a pandemic. We developed COVID-19 Estimated Risk (COVER) scores that quantify a patient's risk of hospital admission with pneumonia (COVER-H), hospitalization with pneumonia requiring intensive services or death (COVER-I), or fatality (COVER-F) in the 30-days following COVID-19 diagnosis using historical data from patients with influenza or flu-like symptoms and tested this in COVID-19 patients. METHODS: We analyzed a federated network of electronic medical records and administrative claims data from 14 data sources and 6 countries containing data collected on or before 4/27/2020. We used a 2-step process to develop 3 scores using historical data from patients with influenza or flu-like symptoms any time prior to 2020. The first step was to create a data-driven model using LASSO regularized logistic regression, the covariates of which were used to develop aggregate covariates for the second step where the COVER scores were developed using a smaller set of features. These 3 COVER scores were then externally validated on patients with 1) influenza or flu-like symptoms and 2) confirmed or suspected COVID-19 diagnosis across 5 databases from South Korea, Spain, and the United States. Outcomes included i) hospitalization with pneumonia, ii) hospitalization with pneumonia requiring intensive services or death, and iii) death in the 30 days after index date. RESULTS: Overall, 44,507 COVID-19 patients were included for model validation. We identified 7 predictors (history of cancer, chronic obstructive pulmonary disease, diabetes, heart disease, hypertension, hyperlipidemia, kidney disease) which combined with age and sex discriminated which patients would experience any of our three outcomes. The models achieved good performance in influenza and COVID-19 cohorts. For COVID-19 the AUC ranges were, COVER-H: 0.69-0.81, COVER-I: 0.73-0.91, and COVER-F: 0.72-0.90. Calibration varied across the validations with some of the COVID-19 validations being less well calibrated than the influenza validations. CONCLUSIONS: This research demonstrated the utility of using a proxy disease to develop a prediction model. The 3 COVER models with 9-predictors that were developed using influenza data perform well for COVID-19 patients for predicting hospitalization, intensive services, and fatality. The scores showed good discriminatory performance which transferred well to the COVID-19 population. There was some miscalibration in the COVID-19 validations, which is potentially due to the difference in symptom severity between the two diseases. A possible solution for this is to recalibrate the models in each location before use.


Subject(s)
COVID-19 , Influenza, Human , Pneumonia , COVID-19 Testing , Humans , Influenza, Human/epidemiology , SARS-CoV-2 , United States
2.
BMJ Open ; 11(12): e057632, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1583090

ABSTRACT

OBJECTIVE: To characterise patients with and without prevalent hypertension and COVID-19 and to assess adverse outcomes in both inpatients and outpatients. DESIGN AND SETTING: This is a retrospective cohort study using 15 healthcare databases (primary and secondary electronic healthcare records, insurance and national claims data) from the USA, Europe and South Korea, standardised to the Observational Medical Outcomes Partnership common data model. Data were gathered from 1 March to 31 October 2020. PARTICIPANTS: Two non-mutually exclusive cohorts were defined: (1) individuals diagnosed with COVID-19 (diagnosed cohort) and (2) individuals hospitalised with COVID-19 (hospitalised cohort), and stratified by hypertension status. Follow-up was from COVID-19 diagnosis/hospitalisation to death, end of the study period or 30 days. OUTCOMES: Demographics, comorbidities and 30-day outcomes (hospitalisation and death for the 'diagnosed' cohort and adverse events and death for the 'hospitalised' cohort) were reported. RESULTS: We identified 2 851 035 diagnosed and 563 708 hospitalised patients with COVID-19. Hypertension was more prevalent in the latter (ranging across databases from 17.4% (95% CI 17.2 to 17.6) to 61.4% (95% CI 61.0 to 61.8) and from 25.6% (95% CI 24.6 to 26.6) to 85.9% (95% CI 85.2 to 86.6)). Patients in both cohorts with hypertension were predominantly >50 years old and female. Patients with hypertension were frequently diagnosed with obesity, heart disease, dyslipidaemia and diabetes. Compared with patients without hypertension, patients with hypertension in the COVID-19 diagnosed cohort had more hospitalisations (ranging from 1.3% (95% CI 0.4 to 2.2) to 41.1% (95% CI 39.5 to 42.7) vs from 1.4% (95% CI 0.9 to 1.9) to 15.9% (95% CI 14.9 to 16.9)) and increased mortality (ranging from 0.3% (95% CI 0.1 to 0.5) to 18.5% (95% CI 15.7 to 21.3) vs from 0.2% (95% CI 0.2 to 0.2) to 11.8% (95% CI 10.8 to 12.8)). Patients in the COVID-19 hospitalised cohort with hypertension were more likely to have acute respiratory distress syndrome (ranging from 0.1% (95% CI 0.0 to 0.2) to 65.6% (95% CI 62.5 to 68.7) vs from 0.1% (95% CI 0.0 to 0.2) to 54.7% (95% CI 50.5 to 58.9)), arrhythmia (ranging from 0.5% (95% CI 0.3 to 0.7) to 45.8% (95% CI 42.6 to 49.0) vs from 0.4% (95% CI 0.3 to 0.5) to 36.8% (95% CI 32.7 to 40.9)) and increased mortality (ranging from 1.8% (95% CI 0.4 to 3.2) to 25.1% (95% CI 23.0 to 27.2) vs from 0.7% (95% CI 0.5 to 0.9) to 10.9% (95% CI 10.4 to 11.4)) than patients without hypertension. CONCLUSIONS: COVID-19 patients with hypertension were more likely to suffer severe outcomes, hospitalisations and deaths compared with those without hypertension.


Subject(s)
COVID-19 , Hypertension , COVID-19 Testing , Cohort Studies , Comorbidity , Female , Hospitalization , Humans , Hypertension/epidemiology , Middle Aged , Retrospective Studies , SARS-CoV-2
3.
J Med Internet Res ; 23(9): e31122, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1459209

ABSTRACT

BACKGROUND: COVID-19 has threatened the health of tens of millions of people all over the world. Massive research efforts have been made in response to the COVID-19 pandemic. Utilization of clinical data can accelerate these research efforts to combat the pandemic since important characteristics of the patients are often found by examining the clinical data. Publicly accessible clinical data on COVID-19, however, remain limited despite the immediate need. OBJECTIVE: To provide shareable clinical data to catalyze COVID-19 research, we present Columbia Open Health Data for COVID-19 Research (COHD-COVID), a publicly accessible database providing clinical concept prevalence, clinical concept co-occurrence, and clinical symptom prevalence for hospitalized patients with COVID-19. COHD-COVID also provides data on hospitalized patients with influenza and general hospitalized patients as comparator cohorts. METHODS: The data used in COHD-COVID were obtained from NewYork-Presbyterian/Columbia University Irving Medical Center's electronic health records database. Condition, drug, and procedure concepts were obtained from the visits of identified patients from the cohorts. Rare concepts were excluded, and the true concept counts were perturbed using Poisson randomization to protect patient privacy. Concept prevalence, concept prevalence ratio, concept co-occurrence, and symptom prevalence were calculated using the obtained concepts. RESULTS: Concept prevalence and concept prevalence ratio analyses showed the clinical characteristics of the COVID-19 cohorts, confirming the well-known characteristics of COVID-19 (eg, acute lower respiratory tract infection and cough). The concepts related to the well-known characteristics of COVID-19 recorded high prevalence and high prevalence ratio in the COVID-19 cohort compared to the hospitalized influenza cohort and general hospitalized cohort. Concept co-occurrence analyses showed potential associations between specific concepts. In case of acute lower respiratory tract infection in the COVID-19 cohort, a high co-occurrence ratio was obtained with COVID-19-related concepts and commonly used drugs (eg, disease due to coronavirus and acetaminophen). Symptom prevalence analysis indicated symptom-level characteristics of the cohorts and confirmed that well-known symptoms of COVID-19 (eg, fever, cough, and dyspnea) showed higher prevalence than the hospitalized influenza cohort and the general hospitalized cohort. CONCLUSIONS: We present COHD-COVID, a publicly accessible database providing useful clinical data for hospitalized patients with COVID-19, hospitalized patients with influenza, and general hospitalized patients. We expect COHD-COVID to provide researchers and clinicians quantitative measures of COVID-19-related clinical features to better understand and combat the pandemic.


Subject(s)
COVID-19 , Influenza, Human , Databases, Factual , Humans , Influenza, Human/epidemiology , Pandemics , SARS-CoV-2
4.
Cancer Epidemiol Biomarkers Prev ; 30(10): 1884-1894, 2021 10.
Article in English | MEDLINE | ID: covidwho-1450633

ABSTRACT

BACKGROUND: We described the demographics, cancer subtypes, comorbidities, and outcomes of patients with a history of cancer and coronavirus disease 2019 (COVID-19). Second, we compared patients hospitalized with COVID-19 to patients diagnosed with COVID-19 and patients hospitalized with influenza. METHODS: We conducted a cohort study using eight routinely collected health care databases from Spain and the United States, standardized to the Observational Medical Outcome Partnership common data model. Three cohorts of patients with a history of cancer were included: (i) diagnosed with COVID-19, (ii) hospitalized with COVID-19, and (iii) hospitalized with influenza in 2017 to 2018. Patients were followed from index date to 30 days or death. We reported demographics, cancer subtypes, comorbidities, and 30-day outcomes. RESULTS: We included 366,050 and 119,597 patients diagnosed and hospitalized with COVID-19, respectively. Prostate and breast cancers were the most frequent cancers (range: 5%-18% and 1%-14% in the diagnosed cohort, respectively). Hematologic malignancies were also frequent, with non-Hodgkin's lymphoma being among the five most common cancer subtypes in the diagnosed cohort. Overall, patients were aged above 65 years and had multiple comorbidities. Occurrence of death ranged from 2% to 14% and from 6% to 26% in the diagnosed and hospitalized COVID-19 cohorts, respectively. Patients hospitalized with influenza (n = 67,743) had a similar distribution of cancer subtypes, sex, age, and comorbidities but lower occurrence of adverse events. CONCLUSIONS: Patients with a history of cancer and COVID-19 had multiple comorbidities and a high occurrence of COVID-19-related events. Hematologic malignancies were frequent. IMPACT: This study provides epidemiologic characteristics that can inform clinical care and etiologic studies.


Subject(s)
COVID-19/mortality , Neoplasms/epidemiology , Outcome Assessment, Health Care/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Child , Cohort Studies , Comorbidity , Databases, Factual , Female , Hospitalization/statistics & numerical data , Humans , Influenza, Human/epidemiology , Male , Middle Aged , Pandemics , Prevalence , Risk Factors , SARS-CoV-2 , Spain/epidemiology , United States/epidemiology , Young Adult
5.
Pediatrics ; 148(3)2021 09.
Article in English | MEDLINE | ID: covidwho-1394618

ABSTRACT

OBJECTIVES: To characterize the demographics, comorbidities, symptoms, in-hospital treatments, and health outcomes among children and adolescents diagnosed or hospitalized with coronavirus disease 2019 (COVID-19) and to compare them in secondary analyses with patients diagnosed with previous seasonal influenza in 2017-2018. METHODS: International network cohort using real-world data from European primary care records (France, Germany, and Spain), South Korean claims and US claims, and hospital databases. We included children and adolescents diagnosed and/or hospitalized with COVID-19 at age <18 between January and June 2020. We described baseline demographics, comorbidities, symptoms, 30-day in-hospital treatments, and outcomes including hospitalization, pneumonia, acute respiratory distress syndrome, multisystem inflammatory syndrome in children, and death. RESULTS: A total of 242 158 children and adolescents diagnosed and 9769 hospitalized with COVID-19 and 2 084 180 diagnosed with influenza were studied. Comorbidities including neurodevelopmental disorders, heart disease, and cancer were more common among those hospitalized with versus diagnosed with COVID-19. Dyspnea, bronchiolitis, anosmia, and gastrointestinal symptoms were more common in COVID-19 than influenza. In-hospital prevalent treatments for COVID-19 included repurposed medications (<10%) and adjunctive therapies: systemic corticosteroids (6.8%-7.6%), famotidine (9.0%-28.1%), and antithrombotics such as aspirin (2.0%-21.4%), heparin (2.2%-18.1%), and enoxaparin (2.8%-14.8%). Hospitalization was observed in 0.3% to 1.3% of the cohort diagnosed with COVID-19, with undetectable (n < 5 per database) 30-day fatality. Thirty-day outcomes including pneumonia and hypoxemia were more frequent in COVID-19 than influenza. CONCLUSIONS: Despite negligible fatality, complications including hospitalization, hypoxemia, and pneumonia were more frequent in children and adolescents with COVID-19 than with influenza. Dyspnea, anosmia, and gastrointestinal symptoms could help differentiate diagnoses. A wide range of medications was used for the inpatient management of pediatric COVID-19.


Subject(s)
COVID-19 , Adolescent , Age Distribution , COVID-19/complications , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19/epidemiology , Child , Child, Preschool , Cohort Studies , Comorbidity , Databases, Factual , Diagnosis, Differential , Female , France/epidemiology , Germany/epidemiology , Hospitalization/statistics & numerical data , Humans , Infant , Infant, Newborn , Influenza, Human/complications , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Male , Republic of Korea/epidemiology , Spain/epidemiology , Symptom Assessment , Time Factors , Treatment Outcome , United States/epidemiology
6.
Cancer Epidemiol Biomarkers Prev ; 30(10): 1884-1894, 2021 10.
Article in English | MEDLINE | ID: covidwho-1317085

ABSTRACT

BACKGROUND: We described the demographics, cancer subtypes, comorbidities, and outcomes of patients with a history of cancer and coronavirus disease 2019 (COVID-19). Second, we compared patients hospitalized with COVID-19 to patients diagnosed with COVID-19 and patients hospitalized with influenza. METHODS: We conducted a cohort study using eight routinely collected health care databases from Spain and the United States, standardized to the Observational Medical Outcome Partnership common data model. Three cohorts of patients with a history of cancer were included: (i) diagnosed with COVID-19, (ii) hospitalized with COVID-19, and (iii) hospitalized with influenza in 2017 to 2018. Patients were followed from index date to 30 days or death. We reported demographics, cancer subtypes, comorbidities, and 30-day outcomes. RESULTS: We included 366,050 and 119,597 patients diagnosed and hospitalized with COVID-19, respectively. Prostate and breast cancers were the most frequent cancers (range: 5%-18% and 1%-14% in the diagnosed cohort, respectively). Hematologic malignancies were also frequent, with non-Hodgkin's lymphoma being among the five most common cancer subtypes in the diagnosed cohort. Overall, patients were aged above 65 years and had multiple comorbidities. Occurrence of death ranged from 2% to 14% and from 6% to 26% in the diagnosed and hospitalized COVID-19 cohorts, respectively. Patients hospitalized with influenza (n = 67,743) had a similar distribution of cancer subtypes, sex, age, and comorbidities but lower occurrence of adverse events. CONCLUSIONS: Patients with a history of cancer and COVID-19 had multiple comorbidities and a high occurrence of COVID-19-related events. Hematologic malignancies were frequent. IMPACT: This study provides epidemiologic characteristics that can inform clinical care and etiologic studies.


Subject(s)
COVID-19/mortality , Neoplasms/epidemiology , Outcome Assessment, Health Care/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Child , Cohort Studies , Comorbidity , Databases, Factual , Female , Hospitalization/statistics & numerical data , Humans , Influenza, Human/epidemiology , Male , Middle Aged , Pandemics , Prevalence , Risk Factors , SARS-CoV-2 , Spain/epidemiology , United States/epidemiology , Young Adult
7.
BMJ : British Medical Journal (Online) ; 373, 2021.
Article in English | ProQuest Central | ID: covidwho-1269784

ABSTRACT

ObjectiveTo quantify the background incidence rates of 15 prespecified adverse events of special interest (AESIs) associated with covid-19 vaccines.DesignMultinational network cohort study.SettingElectronic health records and health claims data from eight countries: Australia, France, Germany, Japan, the Netherlands, Spain, the United Kingdom, and the United States, mapped to a common data model.Participants126 661 070 people observed for at least 365 days before 1 January 2017, 2018, or 2019 from 13 databases.Main outcome measuresEvents of interests were 15 prespecified AESIs (non-haemorrhagic and haemorrhagic stroke, acute myocardial infarction, deep vein thrombosis, pulmonary embolism, anaphylaxis, Bell’s palsy, myocarditis or pericarditis, narcolepsy, appendicitis, immune thrombocytopenia, disseminated intravascular coagulation, encephalomyelitis (including acute disseminated encephalomyelitis), Guillain-Barré syndrome, and transverse myelitis). Incidence rates of AESIs were stratified by age, sex, and database. Rates were pooled across databases using random effects meta-analyses and classified according to the frequency categories of the Council for International Organizations of Medical Sciences.ResultsBackground rates varied greatly between databases. Deep vein thrombosis ranged from 387 (95% confidence interval 370 to 404) per 100 000 person years in UK CPRD GOLD data to 1443 (1416 to 1470) per 100 000 person years in US IBM MarketScan Multi-State Medicaid data among women aged 65 to 74 years. Some AESIs increased with age. For example, myocardial infarction rates in men increased from 28 (27 to 29) per 100 000 person years among those aged 18-34 years to 1400 (1374 to 1427) per 100 000 person years in those older than 85 years in US Optum electronic health record data. Other AESIs were more common in young people. For example, rates of anaphylaxis among boys and men were 78 (75 to 80) per 100 000 person years in those aged 6-17 years and 8 (6 to 10) per 100 000 person years in those older than 85 years in Optum electronic health record data. Meta-analytic estimates of AESI rates were classified according to age and sex.ConclusionThis study found large variations in the observed rates of AESIs by age group and sex, showing the need for stratification or standardisation before using background rates for safety surveillance. Considerable population level heterogeneity in AESI rates was found between databases.

8.
BMJ Open ; 11(6): e049488, 2021 06 02.
Article in English | MEDLINE | ID: covidwho-1255601

ABSTRACT

OBJECTIVE: To characterise the long-term outcomes of patients with COVID-19 admitted to a large New York City medical centre at 3 and 6 months after hospitalisation and describe their healthcare usage, symptoms, morbidity and mortality. DESIGN: Retrospective cohort through manual chart review of the electronic medical record. SETTING: NewYork-Presbyterian/Columbia University Irving Medical Center, a quaternary care academic medical centre in New York City. PARTICIPANTS: The first 1190 consecutive patients with symptoms of COVID-19 who presented to the hospital for care between 1 March and 8 April 2020 and tested positive for SARS-CoV-2 on reverse transcriptase PCR assay. MAIN OUTCOME MEASURES: Type and frequency of follow-up encounters, self-reported symptoms, morbidity and mortality at 3 and 6 months after presentation, respectively; patient disposition information prior to admission, at discharge, and at 3 and 6 months after hospital presentation. RESULTS: Of the 1190 reviewed patients, 929 survived their initial hospitalisation and 261 died. Among survivors, 570 had follow-up encounters (488 at 3 months and 364 at 6 months). An additional 33 patients died in the follow-up period. In the first 3 months after admission, most encounters were telehealth visits (59%). Cardiopulmonary symptoms (35.7% and 28%), especially dyspnoea (22.1% and 15.9%), were the most common reported symptoms at 3-month and 6-month encounters, respectively. Additionally, a large number of patients reported generalised (26.4%) or neuropsychiatric (24.2%) symptoms 6 months after hospitalisation. Patients with severe COVID-19 were more likely to have reduced mobility, reduced independence or a new dialysis requirement in the 6 months after hospitalisation. CONCLUSIONS: Patients hospitalised with SARS-CoV-2 infection reported persistent symptoms up to 6 months after diagnosis. These results highlight the long-term morbidity of COVID-19 and its burden on patients and healthcare resources.


Subject(s)
COVID-19 , Hospitalization , Humans , New York City/epidemiology , Retrospective Studies , SARS-CoV-2
9.
BMJ ; 373: n1038, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1223582

ABSTRACT

OBJECTIVE: To investigate the use of repurposed and adjuvant drugs in patients admitted to hospital with covid-19 across three continents. DESIGN: Multinational network cohort study. SETTING: Hospital electronic health records from the United States, Spain, and China, and nationwide claims data from South Korea. PARTICIPANTS: 303 264 patients admitted to hospital with covid-19 from January 2020 to December 2020. MAIN OUTCOME MEASURES: Prescriptions or dispensations of any drug on or 30 days after the date of hospital admission for covid-19. RESULTS: Of the 303 264 patients included, 290 131 were from the US, 7599 from South Korea, 5230 from Spain, and 304 from China. 3455 drugs were identified. Common repurposed drugs were hydroxychloroquine (used in from <5 (<2%) patients in China to 2165 (85.1%) in Spain), azithromycin (from 15 (4.9%) in China to 1473 (57.9%) in Spain), combined lopinavir and ritonavir (from 156 (<2%) in the VA-OMOP US to 2,652 (34.9%) in South Korea and 1285 (50.5%) in Spain), and umifenovir (0% in the US, South Korea, and Spain and 238 (78.3%) in China). Use of adjunctive drugs varied greatly, with the five most used treatments being enoxaparin, fluoroquinolones, ceftriaxone, vitamin D, and corticosteroids. Hydroxychloroquine use increased rapidly from March to April 2020 but declined steeply in May to June and remained low for the rest of the year. The use of dexamethasone and corticosteroids increased steadily during 2020. CONCLUSIONS: Multiple drugs were used in the first few months of the covid-19 pandemic, with substantial geographical and temporal variation. Hydroxychloroquine, azithromycin, lopinavir-ritonavir, and umifenovir (in China only) were the most prescribed repurposed drugs. Antithrombotics, antibiotics, H2 receptor antagonists, and corticosteroids were often used as adjunctive treatments. Research is needed on the comparative risk and benefit of these treatments in the management of covid-19.


Subject(s)
COVID-19/drug therapy , Chemotherapy, Adjuvant/methods , Drug Repositioning/methods , Administrative Claims, Healthcare/statistics & numerical data , Adolescent , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , Azithromycin/therapeutic use , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Ceftriaxone/therapeutic use , Child , Child, Preschool , China/epidemiology , Cohort Studies , Drug Combinations , Electronic Health Records/statistics & numerical data , Enoxaparin/therapeutic use , Female , Fluoroquinolones/therapeutic use , Humans , Hydroxychloroquine/therapeutic use , Infant , Infant, Newborn , Inpatients , Lopinavir/therapeutic use , Male , Middle Aged , Republic of Korea/epidemiology , Ritonavir/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Safety , Spain/epidemiology , Treatment Outcome , United States/epidemiology , Vitamin D/therapeutic use , Young Adult
10.
Yearb Med Inform ; 30(1): 283-289, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1196871

ABSTRACT

OBJECTIVE: The current observational research literature shows extensive publication bias and contradiction. The Observational Health Data Sciences and Informatics (OHDSI) initiative seeks to improve research reproducibility through open science. METHODS: OHDSI has created an international federated data source of electronic health records and administrative claims that covers nearly 10% of the world's population. Using a common data model with a practical schema and extensive vocabulary mappings, data from around the world follow the identical format. OHDSI's research methods emphasize reproducibility, with a large-scale approach to addressing confounding using propensity score adjustment with extensive diagnostics; negative and positive control hypotheses to test for residual systematic error; a variety of data sources to assess consistency and generalizability; a completely open approach including protocol, software, models, parameters, and raw results so that studies can be externally verified; and the study of many hypotheses in parallel so that the operating characteristics of the methods can be assessed. RESULTS: OHDSI has already produced findings in areas like hypertension treatment that are being incorporated into practice, and it has produced rigorous studies of COVID-19 that have aided government agencies in their treatment decisions, that have characterized the disease extensively, that have estimated the comparative effects of treatments, and that the predict likelihood of advancing to serious complications. CONCLUSIONS: OHDSI practices open science and incorporates a series of methods to address reproducibility. It has produced important results in several areas, including hypertension therapy and COVID-19 research.


Subject(s)
Information Dissemination , Observational Studies as Topic , Publication Bias , COVID-19 , Humans , Reproducibility of Results
11.
JMIR Med Inform ; 9(4): e21547, 2021 Apr 05.
Article in English | MEDLINE | ID: covidwho-1195972

ABSTRACT

BACKGROUND: SARS-CoV-2 is straining health care systems globally. The burden on hospitals during the pandemic could be reduced by implementing prediction models that can discriminate patients who require hospitalization from those who do not. The COVID-19 vulnerability (C-19) index, a model that predicts which patients will be admitted to hospital for treatment of pneumonia or pneumonia proxies, has been developed and proposed as a valuable tool for decision-making during the pandemic. However, the model is at high risk of bias according to the "prediction model risk of bias assessment" criteria, and it has not been externally validated. OBJECTIVE: The aim of this study was to externally validate the C-19 index across a range of health care settings to determine how well it broadly predicts hospitalization due to pneumonia in COVID-19 cases. METHODS: We followed the Observational Health Data Sciences and Informatics (OHDSI) framework for external validation to assess the reliability of the C-19 index. We evaluated the model on two different target populations, 41,381 patients who presented with SARS-CoV-2 at an outpatient or emergency department visit and 9,429,285 patients who presented with influenza or related symptoms during an outpatient or emergency department visit, to predict their risk of hospitalization with pneumonia during the following 0-30 days. In total, we validated the model across a network of 14 databases spanning the United States, Europe, Australia, and Asia. RESULTS: The internal validation performance of the C-19 index had a C statistic of 0.73, and the calibration was not reported by the authors. When we externally validated it by transporting it to SARS-CoV-2 data, the model obtained C statistics of 0.36, 0.53 (0.473-0.584) and 0.56 (0.488-0.636) on Spanish, US, and South Korean data sets, respectively. The calibration was poor, with the model underestimating risk. When validated on 12 data sets containing influenza patients across the OHDSI network, the C statistics ranged between 0.40 and 0.68. CONCLUSIONS: Our results show that the discriminative performance of the C-19 index model is low for influenza cohorts and even worse among patients with COVID-19 in the United States, Spain, and South Korea. These results suggest that C-19 should not be used to aid decision-making during the COVID-19 pandemic. Our findings highlight the importance of performing external validation across a range of settings, especially when a prediction model is being extrapolated to a different population. In the field of prediction, extensive validation is required to create appropriate trust in a model.

12.
Rheumatology (Oxford) ; 60(SI): SI37-SI50, 2021 10 09.
Article in English | MEDLINE | ID: covidwho-1135892

ABSTRACT

OBJECTIVE: Patients with autoimmune diseases were advised to shield to avoid coronavirus disease 2019 (COVID-19), but information on their prognosis is lacking. We characterized 30-day outcomes and mortality after hospitalization with COVID-19 among patients with prevalent autoimmune diseases, and compared outcomes after hospital admissions among similar patients with seasonal influenza. METHODS: A multinational network cohort study was conducted using electronic health records data from Columbia University Irving Medical Center [USA, Optum (USA), Department of Veterans Affairs (USA), Information System for Research in Primary Care-Hospitalization Linked Data (Spain) and claims data from IQVIA Open Claims (USA) and Health Insurance and Review Assessment (South Korea). All patients with prevalent autoimmune diseases, diagnosed and/or hospitalized between January and June 2020 with COVID-19, and similar patients hospitalized with influenza in 2017-18 were included. Outcomes were death and complications within 30 days of hospitalization. RESULTS: We studied 133 589 patients diagnosed and 48 418 hospitalized with COVID-19 with prevalent autoimmune diseases. Most patients were female, aged ≥50 years with previous comorbidities. The prevalence of hypertension (45.5-93.2%), chronic kidney disease (14.0-52.7%) and heart disease (29.0-83.8%) was higher in hospitalized vs diagnosed patients with COVID-19. Compared with 70 660 hospitalized with influenza, those admitted with COVID-19 had more respiratory complications including pneumonia and acute respiratory distress syndrome, and higher 30-day mortality (2.2-4.3% vs 6.32-24.6%). CONCLUSION: Compared with influenza, COVID-19 is a more severe disease, leading to more complications and higher mortality.


Subject(s)
Autoimmune Diseases/mortality , Autoimmune Diseases/virology , COVID-19/mortality , Hospitalization/statistics & numerical data , Influenza, Human/mortality , Adult , Aged , Aged, 80 and over , COVID-19/immunology , Cohort Studies , Female , Humans , Influenza, Human/immunology , Male , Middle Aged , Prevalence , Prognosis , Republic of Korea/epidemiology , SARS-CoV-2 , Spain/epidemiology , United States/epidemiology , Young Adult
13.
J Am Med Inform Assoc ; 28(7): 1480-1488, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1127354

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19) patients are at risk for resource-intensive outcomes including mechanical ventilation (MV), renal replacement therapy (RRT), and readmission. Accurate outcome prognostication could facilitate hospital resource allocation. We develop and validate predictive models for each outcome using retrospective electronic health record data for COVID-19 patients treated between March 2 and May 6, 2020. MATERIALS AND METHODS: For each outcome, we trained 3 classes of prediction models using clinical data for a cohort of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2)-positive patients (n = 2256). Cross-validation was used to select the best-performing models per the areas under the receiver-operating characteristic and precision-recall curves. Models were validated using a held-out cohort (n = 855). We measured each model's calibration and evaluated feature importances to interpret model output. RESULTS: The predictive performance for our selected models on the held-out cohort was as follows: area under the receiver-operating characteristic curve-MV 0.743 (95% CI, 0.682-0.812), RRT 0.847 (95% CI, 0.772-0.936), readmission 0.871 (95% CI, 0.830-0.917); area under the precision-recall curve-MV 0.137 (95% CI, 0.047-0.175), RRT 0.325 (95% CI, 0.117-0.497), readmission 0.504 (95% CI, 0.388-0.604). Predictions were well calibrated, and the most important features within each model were consistent with clinical intuition. DISCUSSION: Our models produce performant, well-calibrated, and interpretable predictions for COVID-19 patients at risk for the target outcomes. They demonstrate the potential to accurately estimate outcome prognosis in resource-constrained care sites managing COVID-19 patients. CONCLUSIONS: We develop and validate prognostic models targeting MV, RRT, and readmission for hospitalized COVID-19 patients which produce accurate, interpretable predictions. Additional external validation studies are needed to further verify the generalizability of our results.


Subject(s)
COVID-19/therapy , Models, Statistical , Patient Readmission , Renal Replacement Therapy , Respiration, Artificial , Adolescent , Adult , Aged , Aged, 80 and over , Area Under Curve , COVID-19/complications , Electronic Health Records , Female , Humans , Logistic Models , Male , Middle Aged , Prognosis , ROC Curve , Retrospective Studies , Statistics, Nonparametric , Young Adult
14.
Lancet Digit Health ; 3(2): e98-e114, 2021 02.
Article in English | MEDLINE | ID: covidwho-1065706

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) have been postulated to affect susceptibility to COVID-19. Observational studies so far have lacked rigorous ascertainment adjustment and international generalisability. We aimed to determine whether use of ACEIs or ARBs is associated with an increased susceptibility to COVID-19 in patients with hypertension. METHODS: In this international, open science, cohort analysis, we used electronic health records from Spain (Information Systems for Research in Primary Care [SIDIAP]) and the USA (Columbia University Irving Medical Center data warehouse [CUIMC] and Department of Veterans Affairs Observational Medical Outcomes Partnership [VA-OMOP]) to identify patients aged 18 years or older with at least one prescription for ACEIs and ARBs (target cohort) or calcium channel blockers (CCBs) and thiazide or thiazide-like diuretics (THZs; comparator cohort) between Nov 1, 2019, and Jan 31, 2020. Users were defined separately as receiving either monotherapy with these four drug classes, or monotherapy or combination therapy (combination use) with other antihypertensive medications. We assessed four outcomes: COVID-19 diagnosis; hospital admission with COVID-19; hospital admission with pneumonia; and hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis. We built large-scale propensity score methods derived through a data-driven approach and negative control experiments across ten pairwise comparisons, with results meta-analysed to generate 1280 study effects. For each study effect, we did negative control outcome experiments using a possible 123 controls identified through a data-rich algorithm. This process used a set of predefined baseline patient characteristics to provide the most accurate prediction of treatment and balance among patient cohorts across characteristics. The study is registered with the EU Post-Authorisation Studies register, EUPAS35296. FINDINGS: Among 1 355 349 antihypertensive users (363 785 ACEI or ARB monotherapy users, 248 915 CCB or THZ monotherapy users, 711 799 ACEI or ARB combination users, and 473 076 CCB or THZ combination users) included in analyses, no association was observed between COVID-19 diagnosis and exposure to ACEI or ARB monotherapy versus CCB or THZ monotherapy (calibrated hazard ratio [HR] 0·98, 95% CI 0·84-1·14) or combination use exposure (1·01, 0·90-1·15). ACEIs alone similarly showed no relative risk difference when compared with CCB or THZ monotherapy (HR 0·91, 95% CI 0·68-1·21; with heterogeneity of >40%) or combination use (0·95, 0·83-1·07). Directly comparing ACEIs with ARBs demonstrated a moderately lower risk with ACEIs, which was significant with combination use (HR 0·88, 95% CI 0·79-0·99) and non-significant for monotherapy (0·85, 0·69-1·05). We observed no significant difference between drug classes for risk of hospital admission with COVID-19, hospital admission with pneumonia, or hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis across all comparisons. INTERPRETATION: No clinically significant increased risk of COVID-19 diagnosis or hospital admission-related outcomes associated with ACEI or ARB use was observed, suggesting users should not discontinue or change their treatment to decrease their risk of COVID-19. FUNDING: Wellcome Trust, UK National Institute for Health Research, US National Institutes of Health, US Department of Veterans Affairs, Janssen Research & Development, IQVIA, South Korean Ministry of Health and Welfare Republic, Australian National Health and Medical Research Council, and European Health Data and Evidence Network.

15.
Lancet Digit Health ; 3(2): e98-e114, 2021 02.
Article in English | MEDLINE | ID: covidwho-989557

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) have been postulated to affect susceptibility to COVID-19. Observational studies so far have lacked rigorous ascertainment adjustment and international generalisability. We aimed to determine whether use of ACEIs or ARBs is associated with an increased susceptibility to COVID-19 in patients with hypertension. METHODS: In this international, open science, cohort analysis, we used electronic health records from Spain (Information Systems for Research in Primary Care [SIDIAP]) and the USA (Columbia University Irving Medical Center data warehouse [CUIMC] and Department of Veterans Affairs Observational Medical Outcomes Partnership [VA-OMOP]) to identify patients aged 18 years or older with at least one prescription for ACEIs and ARBs (target cohort) or calcium channel blockers (CCBs) and thiazide or thiazide-like diuretics (THZs; comparator cohort) between Nov 1, 2019, and Jan 31, 2020. Users were defined separately as receiving either monotherapy with these four drug classes, or monotherapy or combination therapy (combination use) with other antihypertensive medications. We assessed four outcomes: COVID-19 diagnosis; hospital admission with COVID-19; hospital admission with pneumonia; and hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis. We built large-scale propensity score methods derived through a data-driven approach and negative control experiments across ten pairwise comparisons, with results meta-analysed to generate 1280 study effects. For each study effect, we did negative control outcome experiments using a possible 123 controls identified through a data-rich algorithm. This process used a set of predefined baseline patient characteristics to provide the most accurate prediction of treatment and balance among patient cohorts across characteristics. The study is registered with the EU Post-Authorisation Studies register, EUPAS35296. FINDINGS: Among 1 355 349 antihypertensive users (363 785 ACEI or ARB monotherapy users, 248 915 CCB or THZ monotherapy users, 711 799 ACEI or ARB combination users, and 473 076 CCB or THZ combination users) included in analyses, no association was observed between COVID-19 diagnosis and exposure to ACEI or ARB monotherapy versus CCB or THZ monotherapy (calibrated hazard ratio [HR] 0·98, 95% CI 0·84-1·14) or combination use exposure (1·01, 0·90-1·15). ACEIs alone similarly showed no relative risk difference when compared with CCB or THZ monotherapy (HR 0·91, 95% CI 0·68-1·21; with heterogeneity of >40%) or combination use (0·95, 0·83-1·07). Directly comparing ACEIs with ARBs demonstrated a moderately lower risk with ACEIs, which was significant with combination use (HR 0·88, 95% CI 0·79-0·99) and non-significant for monotherapy (0·85, 0·69-1·05). We observed no significant difference between drug classes for risk of hospital admission with COVID-19, hospital admission with pneumonia, or hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis across all comparisons. INTERPRETATION: No clinically significant increased risk of COVID-19 diagnosis or hospital admission-related outcomes associated with ACEI or ARB use was observed, suggesting users should not discontinue or change their treatment to decrease their risk of COVID-19. FUNDING: Wellcome Trust, UK National Institute for Health Research, US National Institutes of Health, US Department of Veterans Affairs, Janssen Research & Development, IQVIA, South Korean Ministry of Health and Welfare Republic, Australian National Health and Medical Research Council, and European Health Data and Evidence Network.

16.
medRxiv ; 2020 Nov 27.
Article in English | MEDLINE | ID: covidwho-955714

ABSTRACT

OBJECTIVE: Patients with autoimmune diseases were advised to shield to avoid COVID-19, but information on their prognosis is lacking. We characterised 30-day outcomes and mortality after hospitalisation with COVID-19 among patients with prevalent autoimmune diseases, and compared outcomes after hospital admissions among similar patients with seasonal influenza. DESIGN: Multinational network cohort study. SETTING: Electronic health records data from Columbia University Irving Medical Center (CUIMC) (NYC, United States [US]), Optum [US], Department of Veterans Affairs (VA) (US), Information System for Research in Primary Care-Hospitalisation Linked Data (SIDIAP-H) (Spain), and claims data from IQVIA Open Claims (US) and Health Insurance and Review Assessment (HIRA) (South Korea). PARTICIPANTS: All patients with prevalent autoimmune diseases, diagnosed and/or hospitalised between January and June 2020 with COVID-19, and similar patients hospitalised with influenza in 2017-2018 were included. MAIN OUTCOME MEASURES: 30-day complications during hospitalisation and death. RESULTS: We studied 133,589 patients diagnosed and 48,418 hospitalised with COVID-19 with prevalent autoimmune diseases. The majority of participants were female (60.5% to 65.9%) and aged ≥50 years. The most prevalent autoimmune conditions were psoriasis (3.5 to 32.5%), rheumatoid arthritis (3.9 to 18.9%), and vasculitis (3.3 to 17.6%). Amongst hospitalised patients, Type 1 diabetes was the most common autoimmune condition (4.8% to 7.5%) in US databases, rheumatoid arthritis in HIRA (18.9%), and psoriasis in SIDIAP-H (26.4%).Compared to 70,660 hospitalised with influenza, those admitted with COVID-19 had more respiratory complications including pneumonia and acute respiratory distress syndrome, and higher 30-day mortality (2.2% to 4.3% versus 6.3% to 24.6%). CONCLUSIONS: Patients with autoimmune diseases had high rates of respiratory complications and 30-day mortality following a hospitalization with COVID-19. Compared to influenza, COVID-19 is a more severe disease, leading to more complications and higher mortality. Future studies should investigate predictors of poor outcomes in COVID-19 patients with autoimmune diseases. WHAT IS ALREADY KNOWN ABOUT THIS TOPIC: Patients with autoimmune conditions may be at increased risk of COVID-19 infection andcomplications.There is a paucity of evidence characterising the outcomes of hospitalised COVID-19 patients with prevalent autoimmune conditions. WHAT THIS STUDY ADDS: Most people with autoimmune diseases who required hospitalisation for COVID-19 were women, aged 50 years or older, and had substantial previous comorbidities.Patients who were hospitalised with COVID-19 and had prevalent autoimmune diseases had higher prevalence of hypertension, chronic kidney disease, heart disease, and Type 2 diabetes as compared to those with prevalent autoimmune diseases who were diagnosed with COVID-19.A variable proportion of 6% to 25% across data sources died within one month of hospitalisation with COVID-19 and prevalent autoimmune diseases.For people with autoimmune diseases, COVID-19 hospitalisation was associated with worse outcomes and 30-day mortality compared to admission with influenza in the 2017-2018 season.

17.
medRxiv ; 2021 Feb 12.
Article in English | MEDLINE | ID: covidwho-955711

ABSTRACT

OBJECTIVE: To estimate the proportion of patients hospitalized with COVID-19 who undergo dialysis, tracheostomy, and extracorporeal membrane oxygenation (ECMO). DESIGN: A network cohort study. SETTING: Seven databases from the United States containing routinely-collected patient data: HealthVerity, Premier, IQVIA Hospital CDM, IQVIA Open Claims, Optum EHR, Optum SES, and VA-OMOP. PATIENTS: Patients hospitalized with a clinical diagnosis or a positive test result for COVID-19. INTERVENTIONS: Dialysis, tracheostomy, and ECMO. MEASUREMENTS AND MAIN RESULTS: 842,928 patients hospitalized with COVID-19 were included (22,887 from HealthVerity, 77,853 from IQVIA Hospital CDM, 533,997 from IQVIA Open Claims, 36,717 from Optum EHR, 4,336 from OPTUM SES, 156,187 from Premier, and 10,951 from VA-OMOP). Across the six databases, 35,192 (4.17% [95% CI: 4.13% to 4.22%]) patients received dialysis, 6,950 (0.82% [0.81% to 0.84%]) had a tracheostomy, and 1,568 (0.19% [95% CI: 0.18% to 0.20%]) patients underwent ECMO over the 30 days following hospitalization. Use of ECMO was more common among patients who were younger, male, and with fewer comorbidities. Tracheostomy was broadly used for a similar proportion of patients regardless of age, sex, or comorbidity. While dialysis was generally used for a similar proportion among younger and older patients, it was more frequent among male patients and among those with chronic kidney disease. CONCLUSION: Use of dialysis among those hospitalized with COVID-19 is high at around 4%. Although less than one percent of patients undergo tracheostomy and ECMO, the absolute numbers of patients who have undergone these interventions is substantial.

18.
medRxiv ; 2020 Oct 27.
Article in English | MEDLINE | ID: covidwho-915971

ABSTRACT

Early identification of symptoms and comorbidities most predictive of COVID-19 is critical to identify infection, guide policies to effectively contain the pandemic, and improve health systems' response. Here, we characterised socio-demographics and comorbidity in 3,316,107persons tested and 219,072 persons tested positive for SARS-CoV-2 since January 2020, and their key health outcomes in the month following the first positive test. Routine care data from primary care electronic health records (EHR) from Spain, hospital EHR from the United States (US), and claims data from South Korea and the US were used. The majority of study participants were women aged 18-65 years old. Positive/tested ratio varied greatly geographically (2.2:100 to 31.2:100) and over time (from 50:100 in February-April to 6.8:100 in May-June). Fever, cough and dyspnoea were the most common symptoms at presentation. Between 4%-38% required admission and 1-10.5% died within a month from their first positive test. Observed disparity in testing practices led to variable baseline characteristics and outcomes, both nationally (US) and internationally. Our findings highlight the importance of large scale characterization of COVID-19 international cohorts to inform planning and resource allocation including testing as countries face a second wave.

19.
Nat Commun ; 11(1): 5009, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-834880

ABSTRACT

Comorbid conditions appear to be common among individuals hospitalised with coronavirus disease 2019 (COVID-19) but estimates of prevalence vary and little is known about the prior medication use of patients. Here, we describe the characteristics of adults hospitalised with COVID-19 and compare them with influenza patients. We include 34,128 (US: 8362, South Korea: 7341, Spain: 18,425) COVID-19 patients, summarising between 4811 and 11,643 unique aggregate characteristics. COVID-19 patients have been majority male in the US and Spain, but predominantly female in South Korea. Age profiles vary across data sources. Compared to 84,585 individuals hospitalised with influenza in 2014-19, COVID-19 patients have more typically been male, younger, and with fewer comorbidities and lower medication use. While protecting groups vulnerable to influenza is likely a useful starting point in the response to COVID-19, strategies will likely need to be broadened to reflect the particular characteristics of individuals being hospitalised with COVID-19.


Subject(s)
Coronavirus Infections/epidemiology , Hospitalization , Influenza, Human/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19 , Cohort Studies , Comorbidity , Coronavirus Infections/drug therapy , Female , Humans , Influenza, Human/drug therapy , Male , Middle Aged , Pneumonia, Viral/drug therapy , Prevalence , Republic of Korea/epidemiology , Sex Factors , Spain/epidemiology , United States/epidemiology , Young Adult
20.
Lancet Rheumatol ; 2(11): e698-e711, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-726931

ABSTRACT

BACKGROUND: Hydroxychloroquine, a drug commonly used in the treatment of rheumatoid arthritis, has received much negative publicity for adverse events associated with its authorisation for emergency use to treat patients with COVID-19 pneumonia. We studied the safety of hydroxychloroquine, alone and in combination with azithromycin, to determine the risk associated with its use in routine care in patients with rheumatoid arthritis. METHODS: In this multinational, retrospective study, new user cohort studies in patients with rheumatoid arthritis aged 18 years or older and initiating hydroxychloroquine were compared with those initiating sulfasalazine and followed up over 30 days, with 16 severe adverse events studied. Self-controlled case series were done to further establish safety in wider populations, and included all users of hydroxychloroquine regardless of rheumatoid arthritis status or indication. Separately, severe adverse events associated with hydroxychloroquine plus azithromycin (compared with hydroxychloroquine plus amoxicillin) were studied. Data comprised 14 sources of claims data or electronic medical records from Germany, Japan, the Netherlands, Spain, the UK, and the USA. Propensity score stratification and calibration using negative control outcomes were used to address confounding. Cox models were fitted to estimate calibrated hazard ratios (HRs) according to drug use. Estimates were pooled where the I 2 value was less than 0·4. FINDINGS: The study included 956 374 users of hydroxychloroquine, 310 350 users of sulfasalazine, 323 122 users of hydroxychloroquine plus azithromycin, and 351 956 users of hydroxychloroquine plus amoxicillin. No excess risk of severe adverse events was identified when 30-day hydroxychloroquine and sulfasalazine use were compared. Self-controlled case series confirmed these findings. However, long-term use of hydroxychloroquine appeared to be associated with increased cardiovascular mortality (calibrated HR 1·65 [95% CI 1·12-2·44]). Addition of azithromycin appeared to be associated with an increased risk of 30-day cardiovascular mortality (calibrated HR 2·19 [95% CI 1·22-3·95]), chest pain or angina (1·15 [1·05-1·26]), and heart failure (1·22 [1·02-1·45]). INTERPRETATION: Hydroxychloroquine treatment appears to have no increased risk in the short term among patients with rheumatoid arthritis, but in the long term it appears to be associated with excess cardiovascular mortality. The addition of azithromycin increases the risk of heart failure and cardiovascular mortality even in the short term. We call for careful consideration of the benefit-risk trade-off when counselling those on hydroxychloroquine treatment. FUNDING: National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, NIHR Senior Research Fellowship programme, US National Institutes of Health, US Department of Veterans Affairs, Janssen Research and Development, IQVIA, Korea Health Industry Development Institute through the Ministry of Health and Welfare Republic of Korea, Versus Arthritis, UK Medical Research Council Doctoral Training Partnership, Foundation Alfonso Martin Escudero, Innovation Fund Denmark, Novo Nordisk Foundation, Singapore Ministry of Health's National Medical Research Council Open Fund Large Collaborative Grant, VINCI, Innovative Medicines Initiative 2 Joint Undertaking, EU's Horizon 2020 research and innovation programme, and European Federation of Pharmaceutical Industries and Associations.

SELECTION OF CITATIONS
SEARCH DETAIL