Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Document Type
Year range
Microb Genom ; 9(1)2023 01.
Article in English | MEDLINE | ID: covidwho-2230369


Pathogen genomics is a critical tool for public health surveillance, infection control, outbreak investigations as well as research. In order to make use of pathogen genomics data, they must be interpreted using contextual data (metadata). Contextual data include sample metadata, laboratory methods, patient demographics, clinical outcomes and epidemiological information. However, the variability in how contextual information is captured by different authorities and how it is encoded in different databases poses challenges for data interpretation, integration and their use/re-use. The DataHarmonizer is a template-driven spreadsheet application for harmonizing, validating and transforming genomics contextual data into submission-ready formats for public or private repositories. The tool's web browser-based JavaScript environment enables validation and its offline functionality and local installation increases data security. The DataHarmonizer was developed to address the data sharing needs that arose during the COVID-19 pandemic, and was used by members of the Canadian COVID Genomics Network (CanCOGeN) to harmonize SARS-CoV-2 contextual data for national surveillance and for public repository submission. In order to support coordination of international surveillance efforts, we have partnered with the Public Health Alliance for Genomic Epidemiology to also provide a template conforming to its SARS-CoV-2 contextual data specification for use worldwide. Templates are also being developed for One Health and foodborne pathogens. Overall, the DataHarmonizer tool improves the effectiveness and fidelity of contextual data capture as well as its subsequent usability. Harmonization of contextual information across authorities, platforms and systems globally improves interoperability and reusability of data for concerted public health and research initiatives to fight the current pandemic and future public health emergencies. While initially developed for the COVID-19 pandemic, its expansion to other data management applications and pathogens is already underway.

COVID-19 , Humans , COVID-19/epidemiology , Pandemics , SARS-CoV-2/genetics , Canada , Genomics/methods
BMJ Open ; 13(2): e066418, 2023 02 07.
Article in English | MEDLINE | ID: covidwho-2235284


OBJECTIVES: COVID-19 research has significantly contributed to pandemic response and the enhancement of public health capacity. COVID-19 data collected by provincial/territorial health authorities in Canada are valuable for research advancement yet not readily available to the public, including researchers. To inform developments in public health data-sharing in Canada, we explored Canadians' opinions of public health authorities sharing deidentified individual-level COVID-19 data publicly. DESIGN/SETTING/INTERVENTIONS/OUTCOMES: A national cross-sectional survey was administered in Canada in March 2022, assessing Canadians' opinions on publicly sharing COVID-19 datatypes. Market research firm Léger was employed for recruitment and data collection. PARTICIPANTS: Anyone greater than or equal to 18 years and currently living in Canada. RESULTS: 4981 participants completed the survey with a 92.3% response rate. 79.7% were supportive of provincial/territorial authorities publicly sharing deidentified COVID-19 data, while 20.3% were hesitant/averse/unsure. Datatypes most supported for being shared publicly were symptoms (83.0% in support), geographical region (82.6%) and COVID-19 vaccination status (81.7%). Datatypes with the most aversion were employment sector (27.4% averse), postal area (26.7%) and international travel history (19.7%). Generally supportive Canadians were characterised as being ≥50 years, with higher education, and being vaccinated against COVID-19 at least once. Vaccination status was the most influential predictor of data-sharing opinion, with respondents who were ever vaccinated being 4.20 times more likely (95% CI 3.21 to 5.48, p=0.000) to be generally supportive of data-sharing than those unvaccinated. CONCLUSIONS: These findings suggest that the Canadian public is generally favourable to deidentified data-sharing. Identifying factors that are likely to improve attitudes towards data-sharing are useful to stakeholders involved in data-sharing initiatives, such as public health agencies, in informing the development of public health communication and data-sharing policies. As Canada progresses through the COVID-19 pandemic, and with limited testing and reporting of COVID-19 data, it is essential to improve deidentified data-sharing given the public's general support for these efforts.

COVID-19 , Humans , Cross-Sectional Studies , Public Opinion , Pandemics , COVID-19 Vaccines , Canada
Front Genet ; 12: 716541, 2021.
Article in English | MEDLINE | ID: covidwho-1785330


COVID-19 was declared to be a pandemic in March 2020 by the World Health Organization. Timely sharing of viral genomic sequencing data accompanied by a minimal set of contextual data is essential for informing regional, national, and international public health responses. Such contextual data is also necessary for developing, and improving clinical therapies and vaccines, and enhancing the scientific community's understanding of the SARS-CoV-2 virus. The Canadian COVID-19 Genomics Network (CanCOGeN) was launched in April 2020 to coordinate and upscale existing genomics-based COVID-19 research and surveillance efforts. CanCOGeN is performing large-scale sequencing of both the genomes of SARS-CoV-2 virus samples (VirusSeq) and affected Canadians (HostSeq). This paper addresses the privacy concerns associated with sharing the viral sequence data with a pre-defined set of contextual data describing the sample source and case attribute of the sequence data in the Canadian context. Currently, the viral genome sequences are shared by provincial public health laboratories and their healthcare and academic partners, with the Canadian National Microbiology Laboratory and with publicly accessible databases. However, data sharing delays and the provision of incomplete contextual data often occur because publicly releasing such data triggers privacy and data governance concerns. The CanCOGeN Ethics and Governance Expert Working Group thus has investigated several privacy issues cited by CanCOGeN data providers/stewards. This paper addresses these privacy concerns and offers insights primarily in the Canadian context, although similar privacy considerations also exist in other jurisdictions. We maintain that sharing viral sequencing data and its limited associated contextual data in the public domain generally does not pose insurmountable privacy challenges. However, privacy risks associated with reidentification should be actively monitored due to advancements in reidentification methods and the evolving pandemic landscape. We also argue that during a global health emergency such as COVID-19, privacy should not be used as a blanket measure to prevent such genomic data sharing due to the significant benefits it provides towards public health responses and ongoing research activities.

Gigascience ; 112022 02 16.
Article in English | MEDLINE | ID: covidwho-1692222


BACKGROUND: The Public Health Alliance for Genomic Epidemiology (PHA4GE) ( is a global coalition that is actively working to establish consensus standards, document and share best practices, improve the availability of critical bioinformatics tools and resources, and advocate for greater openness, interoperability, accessibility, and reproducibility in public health microbial bioinformatics. In the face of the current pandemic, PHA4GE has identified a need for a fit-for-purpose, open-source SARS-CoV-2 contextual data standard. RESULTS: As such, we have developed a SARS-CoV-2 contextual data specification package based on harmonizable, publicly available community standards. The specification can be implemented via a collection template, as well as an array of protocols and tools to support both the harmonization and submission of sequence data and contextual information to public biorepositories. CONCLUSIONS: Well-structured, rich contextual data add value, promote reuse, and enable aggregation and integration of disparate datasets. Adoption of the proposed standard and practices will better enable interoperability between datasets and systems, improve the consistency and utility of generated data, and ultimately facilitate novel insights and discoveries in SARS-CoV-2 and COVID-19. The package is now supported by the NCBI's BioSample database.

COVID-19 , SARS-CoV-2 , Genomics , Humans , Metadata , Public Health , Reproducibility of Results