Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Lancet Digit Health ; 3(5): e286-e294, 2021 05.
Article in English | MEDLINE | ID: covidwho-1152741

ABSTRACT

BACKGROUND: Chest x-ray is a relatively accessible, inexpensive, fast imaging modality that might be valuable in the prognostication of patients with COVID-19. We aimed to develop and evaluate an artificial intelligence system using chest x-rays and clinical data to predict disease severity and progression in patients with COVID-19. METHODS: We did a retrospective study in multiple hospitals in the University of Pennsylvania Health System in Philadelphia, PA, USA, and Brown University affiliated hospitals in Providence, RI, USA. Patients who presented to a hospital in the University of Pennsylvania Health System via the emergency department, with a diagnosis of COVID-19 confirmed by RT-PCR and with an available chest x-ray from their initial presentation or admission, were retrospectively identified and randomly divided into training, validation, and test sets (7:1:2). Using the chest x-rays as input to an EfficientNet deep neural network and clinical data, models were trained to predict the binary outcome of disease severity (ie, critical or non-critical). The deep-learning features extracted from the model and clinical data were used to build time-to-event models to predict the risk of disease progression. The models were externally tested on patients who presented to an independent multicentre institution, Brown University affiliated hospitals, and compared with severity scores provided by radiologists. FINDINGS: 1834 patients who presented via the University of Pennsylvania Health System between March 9 and July 20, 2020, were identified and assigned to the model training (n=1285), validation (n=183), or testing (n=366) sets. 475 patients who presented via the Brown University affiliated hospitals between March 1 and July 18, 2020, were identified for external testing of the models. When chest x-rays were added to clinical data for severity prediction, area under the receiver operating characteristic curve (ROC-AUC) increased from 0·821 (95% CI 0·796-0·828) to 0·846 (0·815-0·852; p<0·0001) on internal testing and 0·731 (0·712-0·738) to 0·792 (0·780-0 ·803; p<0·0001) on external testing. When deep-learning features were added to clinical data for progression prediction, the concordance index (C-index) increased from 0·769 (0·755-0·786) to 0·805 (0·800-0·820; p<0·0001) on internal testing and 0·707 (0·695-0·729) to 0·752 (0·739-0·764; p<0·0001) on external testing. The image and clinical data combined model had significantly better prognostic performance than combined severity scores and clinical data on internal testing (C-index 0·805 vs 0·781; p=0·0002) and external testing (C-index 0·752 vs 0·715; p<0·0001). INTERPRETATION: In patients with COVID-19, artificial intelligence based on chest x-rays had better prognostic performance than clinical data or radiologist-derived severity scores. Using artificial intelligence, chest x-rays can augment clinical data in predicting the risk of progression to critical illness in patients with COVID-19. FUNDING: Brown University, Amazon Web Services Diagnostic Development Initiative, Radiological Society of North America, National Cancer Institute and National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health.


Subject(s)
Artificial Intelligence , COVID-19/physiopathology , Prognosis , Radiography, Thoracic , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Tomography, X-Ray Computed , United States , Young Adult
3.
Korean J Radiol ; 22(7): 1213-1224, 2021 07.
Article in English | MEDLINE | ID: covidwho-1143395

ABSTRACT

OBJECTIVE: To develop a machine learning (ML) pipeline based on radiomics to predict Coronavirus Disease 2019 (COVID-19) severity and the future deterioration to critical illness using CT and clinical variables. MATERIALS AND METHODS: Clinical data were collected from 981 patients from a multi-institutional international cohort with real-time polymerase chain reaction-confirmed COVID-19. Radiomics features were extracted from chest CT of the patients. The data of the cohort were randomly divided into training, validation, and test sets using a 7:1:2 ratio. A ML pipeline consisting of a model to predict severity and time-to-event model to predict progression to critical illness were trained on radiomics features and clinical variables. The receiver operating characteristic area under the curve (ROC-AUC), concordance index (C-index), and time-dependent ROC-AUC were calculated to determine model performance, which was compared with consensus CT severity scores obtained by visual interpretation by radiologists. RESULTS: Among 981 patients with confirmed COVID-19, 274 patients developed critical illness. Radiomics features and clinical variables resulted in the best performance for the prediction of disease severity with a highest test ROC-AUC of 0.76 compared with 0.70 (0.76 vs. 0.70, p = 0.023) for visual CT severity score and clinical variables. The progression prediction model achieved a test C-index of 0.868 when it was based on the combination of CT radiomics and clinical variables compared with 0.767 when based on CT radiomics features alone (p < 0.001), 0.847 when based on clinical variables alone (p = 0.110), and 0.860 when based on the combination of visual CT severity scores and clinical variables (p = 0.549). Furthermore, the model based on the combination of CT radiomics and clinical variables achieved time-dependent ROC-AUCs of 0.897, 0.933, and 0.927 for the prediction of progression risks at 3, 5 and 7 days, respectively. CONCLUSION: CT radiomics features combined with clinical variables were predictive of COVID-19 severity and progression to critical illness with fairly high accuracy.


Subject(s)
COVID-19/diagnosis , Machine Learning , Severity of Illness Index , Tomography, X-Ray Computed/methods , Critical Illness , Humans , Male , Middle Aged , ROC Curve , Retrospective Studies , SARS-CoV-2/pathogenicity
4.
Radiology ; 296(3): E156-E165, 2020 09.
Article in English | MEDLINE | ID: covidwho-729427

ABSTRACT

Background Coronavirus disease 2019 (COVID-19) and pneumonia of other diseases share similar CT characteristics, which contributes to the challenges in differentiating them with high accuracy. Purpose To establish and evaluate an artificial intelligence (AI) system for differentiating COVID-19 and other pneumonia at chest CT and assessing radiologist performance without and with AI assistance. Materials and Methods A total of 521 patients with positive reverse transcription polymerase chain reaction results for COVID-19 and abnormal chest CT findings were retrospectively identified from 10 hospitals from January 2020 to April 2020. A total of 665 patients with non-COVID-19 pneumonia and definite evidence of pneumonia at chest CT were retrospectively selected from three hospitals between 2017 and 2019. To classify COVID-19 versus other pneumonia for each patient, abnormal CT slices were input into the EfficientNet B4 deep neural network architecture after lung segmentation, followed by a two-layer fully connected neural network to pool slices together. The final cohort of 1186 patients (132 583 CT slices) was divided into training, validation, and test sets in a 7:2:1 and equal ratio. Independent testing was performed by evaluating model performance in separate hospitals. Studies were blindly reviewed by six radiologists without and then with AI assistance. Results The final model achieved a test accuracy of 96% (95% confidence interval [CI]: 90%, 98%), a sensitivity of 95% (95% CI: 83%, 100%), and a specificity of 96% (95% CI: 88%, 99%) with area under the receiver operating characteristic curve of 0.95 and area under the precision-recall curve of 0.90. On independent testing, this model achieved an accuracy of 87% (95% CI: 82%, 90%), a sensitivity of 89% (95% CI: 81%, 94%), and a specificity of 86% (95% CI: 80%, 90%) with area under the receiver operating characteristic curve of 0.90 and area under the precision-recall curve of 0.87. Assisted by the probabilities of the model, the radiologists achieved a higher average test accuracy (90% vs 85%, Δ = 5, P < .001), sensitivity (88% vs 79%, Δ = 9, P < .001), and specificity (91% vs 88%, Δ = 3, P = .001). Conclusion Artificial intelligence assistance improved radiologists' performance in distinguishing coronavirus disease 2019 pneumonia from non-coronavirus disease 2019 pneumonia at chest CT. © RSNA, 2020 Online supplemental material is available for this article.


Subject(s)
Artificial Intelligence , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Radiologists , Tomography, X-Ray Computed/methods , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Child , Child, Preschool , China , Diagnosis, Differential , Female , Humans , Infant , Infant, Newborn , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Philadelphia , Pneumonia/diagnostic imaging , Radiography, Thoracic , Radiologists/standards , Radiologists/statistics & numerical data , Retrospective Studies , Rhode Island , SARS-CoV-2 , Sensitivity and Specificity , Young Adult
5.
Radiology ; 296(2): E46-E54, 2020 08.
Article in English | MEDLINE | ID: covidwho-697192

ABSTRACT

Background Despite its high sensitivity in diagnosing coronavirus disease 2019 (COVID-19) in a screening population, the chest CT appearance of COVID-19 pneumonia is thought to be nonspecific. Purpose To assess the performance of radiologists in the United States and China in differentiating COVID-19 from viral pneumonia at chest CT. Materials and Methods In this study, 219 patients with positive COVID-19, as determined with reverse-transcription polymerase chain reaction (RT-PCR) and abnormal chest CT findings, were retrospectively identified from seven Chinese hospitals in Hunan Province, China, from January 6 to February 20, 2020. Two hundred five patients with positive respiratory pathogen panel results for viral pneumonia and CT findings consistent with or highly suspicious for pneumonia, according to original radiologic interpretation within 7 days of each other, were identified from Rhode Island Hospital in Providence, RI. Three radiologists from China reviewed all chest CT scans (n = 424) blinded to RT-PCR findings to differentiate COVID-19 from viral pneumonia. A sample of 58 age-matched patients was randomly selected and evaluated by four radiologists from the United States in a similar fashion. Different CT features were recorded and compared between the two groups. Results For all chest CT scans (n = 424), the accuracy of the three radiologists from China in differentiating COVID-19 from non-COVID-19 viral pneumonia was 83% (350 of 424), 80% (338 of 424), and 60% (255 of 424). In the randomly selected sample (n = 58), the sensitivities of three radiologists from China and four radiologists from the United States were 80%, 67%, 97%, 93%, 83%, 73%, and 70%, respectively. The corresponding specificities of the same readers were 100%, 93%, 7%, 100%, 93%, 93%, and 100%, respectively. Compared with non-COVID-19 pneumonia, COVID-19 pneumonia was more likely to have a peripheral distribution (80% vs 57%, P < .001), ground-glass opacity (91% vs 68%, P < .001), fine reticular opacity (56% vs 22%, P < .001), and vascular thickening (59% vs 22%, P < .001), but it was less likely to have a central and peripheral distribution (14% vs 35%, P < .001), pleural effusion (4% vs 39%, P < .001), or lymphadenopathy (3% vs 10%, P = .002). Conclusion Radiologists in China and in the United States distinguished coronavirus disease 2019 from viral pneumonia at chest CT with moderate to high accuracy. © RSNA, 2020 Online supplemental material is available for this article. A translation of this abstract in Farsi is available in the supplement. ترجمه چکیده این مقاله به فارسی، در ضمیمه موجود است.


Subject(s)
Betacoronavirus , Clinical Competence , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Radiologists/standards , Adult , Aged , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Predictive Value of Tests , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL