Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Environ Res Public Health ; 20(3)2023 02 01.
Article in English | MEDLINE | ID: covidwho-2254850

ABSTRACT

BACKGROUND: Pulmonary tuberculosis (TB), a global health problem, is typically caused by the bacterium Mycobacterium tuberculosis. Herpes zoster (HZ) is caused by the reactivation of the varicella-zoster virus (VZV). The reactivation of VZV can be caused by stress. We investigated whether pulmonary TB increases the risk of HZ development. METHODS: This study used data that sampled a population of 2 million people in 2000 from the National Health Insurance Research Database. This cohort study observed Taiwanese patients aged 20-100 years with pulmonary TB from 2000 to 2017 (tracked to 2018). Pulmonary TB was defined as having two or more outpatient diagnoses or at least one admission record. To address potential bias caused by confounding factors, the control cohort and pulmonary TB cohort were matched 1:1 by age, gender, index year, and comorbidities. Patients with HZ before the index date were excluded. RESULTS: A total of 30,805 patients were in the pulmonary TB and control cohorts. The incidence rate of HZ in pulmonary TB and control cohorts were 12.00 and 9.66 per 1000 person-years, respectively. The risk of HZ in the pulmonary TB cohort (adjusted hazard ratios = 1.23; 95% confidence interval = 1.16-1.30) was significantly higher than that of in control cohort. Among patients without comorbidities, the patients with TB were 1.28-fold more likely to have HZ than those without TB. CONCLUSION: Patients with TB should be well treated to avoid the potential risk of HZ occurrence. Although we identified the association between pulmonary TB and HZ, further studies are needed to confirm the result.


Subject(s)
Herpes Zoster , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Humans , Herpesvirus 3, Human , Cohort Studies , Herpes Zoster/epidemiology , Comorbidity , Tuberculosis, Pulmonary/epidemiology , Incidence , Risk Factors , Retrospective Studies
2.
Am J Emerg Med ; 38(7): 1548.e5-1548.e7, 2020 07.
Article in English | MEDLINE | ID: covidwho-2220380

ABSTRACT

OBJECTIVE: To present guidance for clinicians caring for adult patients with acuteischemic stroke with confirmed or suspected COVID-19 infection. METHODS: The summary was prepared after review of systematic literature reviews,reference to previously published stroke guidelines, personal files, and expert opinionby members from 18 countries. RESULTS: The document includes practice implications for evaluation of stroke patientswith caution for stroke team members to avoid COVID-19 exposure, during clinicalevaluation and conduction of imaging and laboratory procedures with specialconsiderations of intravenous thrombolysis and mechanical thrombectomy in strokepatients with suspected or confirmed COVID-19 infection. RESULTS: Conclusions-The summary is expected to guide clinicians caring for adult patientswith acute ischemic stroke who are suspected of, or confirmed, with COVID-19infection.


Subject(s)
Brain Ischemia/therapy , Coronavirus Infections/complications , Infection Control , Pneumonia, Viral/complications , Stroke/therapy , Betacoronavirus , Brain Ischemia/diagnostic imaging , COVID-19 , Disease Management , Humans , Pandemics , SARS-CoV-2 , Stroke/diagnostic imaging
3.
Stroke Vasc Neurol ; 7(2): 158-165, 2022 04.
Article in English | MEDLINE | ID: covidwho-1832554

ABSTRACT

RATIONALE: Haematoma growth is common early after intracerebral haemorrhage (ICH), and is a key determinant of outcome. Tranexamic acid, a widely available antifibrinolytic agent with an excellent safety profile, may reduce haematoma growth. METHODS AND DESIGN: Stopping intracerebral haemorrhage with tranexamic acid for hyperacute onset presentation including mobile stroke units (STOP-MSU) is a phase II double-blind, randomised, placebo-controlled, multicentre, international investigator-led clinical trial, conducted within the estimand statistical framework. HYPOTHESIS: In patients with spontaneous ICH, treatment with tranexamic acid within 2 hours of onset will reduce haematoma expansion compared with placebo. SAMPLE SIZE ESTIMATES: A sample size of 180 patients (90 in each arm) would be required to detect an absolute difference in the primary outcome of 20% (placebo 39% vs treatment 19%) under a two-tailed significance level of 0.05. An adaptive sample size re-estimation based on the outcomes of 144 patients will allow a possible increase to a prespecified maximum of 326 patients. INTERVENTION: Participants will receive 1 g intravenous tranexamic acid over 10 min, followed by 1 g intravenous tranexamic acid over 8 hours; or matching placebo. PRIMARY EFFICACY MEASURE: The primary efficacy measure is the proportion of patients with haematoma growth by 24±6 hours, defined as either ≥33% relative increase or ≥6 mL absolute increase in haematoma volume between baseline and follow-up CT scan. DISCUSSION: We describe the rationale and protocol of STOP-MSU, a phase II trial of tranexamic acid in patients with ICH within 2 hours from onset, based in participating mobile stroke units and emergency departments.


Subject(s)
Cerebral Hemorrhage , Tranexamic Acid , Antifibrinolytic Agents/adverse effects , Antifibrinolytic Agents/therapeutic use , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/drug therapy , Clinical Trials, Phase II as Topic , Hematoma/etiology , Hematoma/prevention & control , Humans , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Stroke/therapy , Time Factors , Tranexamic Acid/adverse effects , Tranexamic Acid/therapeutic use
4.
J Stroke Cerebrovasc Dis ; 29(9): 104938, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-210006

ABSTRACT

BACKGROUND AND PURPOSE: The novel severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), now named coronavirus disease 2019 (COVID-19), may change the risk of stroke through an enhanced systemic inflammatory response, hypercoagulable state, and endothelial damage in the cerebrovascular system. Moreover, due to the current pandemic, some countries have prioritized health resources towards COVID-19 management, making it more challenging to appropriately care for other potentially disabling and fatal diseases such as stroke. The aim of this study is to identify and describe changes in stroke epidemiological trends before, during, and after the COVID-19 pandemic. METHODS: This is an international, multicenter, hospital-based study on stroke incidence and outcomes during the COVID-19 pandemic. We will describe patterns in stroke management, stroke hospitalization rate, and stroke severity, subtype (ischemic/hemorrhagic), and outcomes (including in-hospital mortality) in 2020 during COVID-19 pandemic, comparing them with the corresponding data from 2018 and 2019, and subsequently 2021. We will also use an interrupted time series (ITS) analysis to assess the change in stroke hospitalization rates before, during, and after COVID-19, in each participating center. CONCLUSION: The proposed study will potentially enable us to better understand the changes in stroke care protocols, differential hospitalization rate, and severity of stroke, as it pertains to the COVID-19 pandemic. Ultimately, this will help guide clinical-based policies surrounding COVID-19 and other similar global pandemics to ensure that management of cerebrovascular comorbidity is appropriately prioritized during the global crisis. It will also guide public health guidelines for at-risk populations to reduce risks of complications from such comorbidities.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Hospitalization/trends , Pneumonia, Viral/epidemiology , Practice Patterns, Physicians'/trends , Stroke/epidemiology , Stroke/therapy , COVID-19 , Comorbidity , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Coronavirus Infections/virology , Healthcare Disparities/trends , Hospital Mortality/trends , Host-Pathogen Interactions , Humans , Incidence , Interrupted Time Series Analysis , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Prospective Studies , Registries , Retrospective Studies , Risk Factors , SARS-CoV-2 , Stroke/diagnosis , Stroke/mortality , Time Factors , Treatment Outcome
5.
Int J Stroke ; 15(5): 540-554, 2020 07.
Article in English | MEDLINE | ID: covidwho-155280

ABSTRACT

BACKGROUND AND PURPOSE: On 11 March 2020, World Health Organization (WHO) declared the COVID-19 infection a pandemic. The risk of ischemic stroke may be higher in patients with COVID-19 infection similar to those with other respiratory tract infections. We present a comprehensive set of practice implications in a single document for clinicians caring for adult patients with acute ischemic stroke with confirmed or suspected COVID-19 infection. METHODS: The practice implications were prepared after review of data to reach the consensus among stroke experts from 18 countries. The writers used systematic literature reviews, reference to previously published stroke guidelines, personal files, and expert opinion to summarize existing evidence, indicate gaps in current knowledge, and when appropriate, formulate practice implications. All members of the writing group had opportunities to comment in writing on the practice implications and approved the final version of this document. RESULTS: This document with consensus is divided into 18 sections. A total of 41 conclusions and practice implications have been developed. The document includes practice implications for evaluation of stroke patients with caution for stroke team members to avoid COVID-19 exposure, during clinical evaluation and performance of imaging and laboratory procedures with special considerations of intravenous thrombolysis and mechanical thrombectomy in stroke patients with suspected or confirmed COVID-19 infection. CONCLUSIONS: These practice implications with consensus based on the currently available evidence aim to guide clinicians caring for adult patients with acute ischemic stroke who are suspected of, or confirmed, with COVID-19 infection. Under certain circumstances, however, only limited evidence is available to support these practice implications, suggesting an urgent need for establishing procedures for the management of stroke patients with suspected or confirmed COVID-19 infection.


Subject(s)
Brain Ischemia/therapy , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Stroke/therapy , Betacoronavirus , Brain Ischemia/diagnosis , Brain Ischemia/epidemiology , COVID-19 , Cerebral Angiography , Comorbidity , Computed Tomography Angiography , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Disease Management , Health Personnel , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Magnetic Resonance Angiography , Magnetic Resonance Imaging , Pandemics , Patient Isolators , Perfusion Imaging , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Risk , SARS-CoV-2 , Stroke/diagnosis , Stroke/epidemiology , Thrombophilia/blood , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL