Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
2.
Frontiers in public health ; 9, 2021.
Article in English | EuropePMC | ID: covidwho-1610555

ABSTRACT

Background: At present, the global sever acute respiratory syndrome coronavirus 2 (SARS-CoV-2) situation is still grim, and the risk of local outbreaks caused by imported viruses is high. Therefore, it is necessary to monitor the genomic variation and genetic evolution characteristics of SARS-CoV-2. The main purpose of this study was to detect the entry of different SARS-CoV-2 variants into Jiangsu Province, China. Methods: First, oropharyngeal swabs were collected from 165 patients (55 locally confirmed cases and 110 imported cases with confirmed and asymptomatic infection) diagnosed with SARS-CoV-2 infection in Jiangsu Province, China between January 2020 and June 2021. Then, whole genome sequencing was used to explore the phylogeny and find potential mutations in genes of the SARS-CoV-2. Last, association analysis among clinical characteristics and SARS-CoV-2 Variant of Concern, pedigree surveillance analysis of SARS-COV-2, and single nucleotide polymorphisms (SNPs) detection in SARS-COV-2 samples was performed. Results: More men were infected with the SARS-CoV-2 when compared with women. The onset of the SARS-CoV-2 showed a trend of younger age. Moreover, the number of asymptomatic infected patients was large, similar to the number of common patients. Patients infected with Alpha (50%) and Beta (90%) variants were predominantly asymptomatic, while patients infected with Delta (17%) variant presented severe clinical features. A total of 935 SNPs were detected in 165 SARS-COV-2 samples. Among which, missense mutation (58%) was the dominant mutation type. About 56% of SNPs changes occurred in the open reading frame 1ab (ORF1ab) gene. Approximately, 20% of SNP changes occurred in spike glycoprotein (S) gene, such as p.Asp501Tyr, p.Pro681His, and p.Pro681Arg. In total, nine SNPs loci in S gene were significantly correlated with the severity of patients. It is worth mentioning that amino acid substitution of p.Asp614Gly was significantly positively correlated with the clinical severity of patients. The amino acid replacements of p.Ser316Thr and p.Lu484Lys were significantly negatively correlated with the course of disease. Conclusion: Sever acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may further undergo a variety of mutations in different hosts, countries, and weather conditions. Detecting the entry of different virus variants of SARS-CoV-2 into Jiangsu Province, China may help to monitor the spread of infection and the diversity of eventual recombination or genomic mutations.

3.
PLoS One ; 16(11): e0259706, 2021.
Article in English | MEDLINE | ID: covidwho-1526685

ABSTRACT

BACKGROUND: China is vulnerable to zoonotic disease transmission due to a large agricultural work force, sizable domestic livestock population, and a highly biodiverse ecology. To better address this threat, representatives from the human, animal, and environmental health sectors in China held a One Health Zoonotic Disease Prioritization (OHZDP) workshop in May 2019 to develop a list of priority zoonotic diseases for multisectoral, One Health collaboration. METHODS: Representatives used the OHZDP Process, developed by the US Centers for Disease Control and Prevention (US CDC), to prioritize zoonotic diseases for China. Representatives defined the criteria used for prioritization and determined questions and weights for each individual criterion. A review of English and Chinese literature was conducted prior to the workshop to collect disease specific information on prevalence, morbidity, mortality, and Disability-Adjusted Life Years (DALYs) from China and the Western Pacific Region for zoonotic diseases considered for prioritization. RESULTS: Thirty zoonotic diseases were evaluated for prioritization. Criteria selected included: 1) disease hazard/severity (case fatality rate) in humans, 2) epidemic scale and intensity (in humans and animals) in China, 3) economic impact, 4) prevention and control, and 5) social impact. Disease specific information was obtained from 792 articles (637 in English and 155 in Chinese) and subject matter experts for the prioritization process. Following discussion of the OHZDP Tool output among disease experts, five priority zoonotic diseases were identified for China: avian influenza, echinococcosis, rabies, plague, and brucellosis. CONCLUSION: Representatives agreed on a list of five priority zoonotic diseases that can serve as a foundation to strengthen One Health collaboration for disease prevention and control in China; this list was developed prior to the emergence of SARS-CoV-2 and the COVID-19 pandemic. Next steps focused on establishing a multisectoral, One Health coordination mechanism, improving multisectoral linkages in laboratory testing and surveillance platforms, creating multisectoral preparedness and response plans, and increasing workforce capacity.


Subject(s)
Consensus Development Conferences as Topic , Zoonoses/prevention & control , Animals , China , Humans , Zoonoses/epidemiology , Zoonoses/transmission
4.
Microbiol Spectr ; 9(2): e0059021, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1434909

ABSTRACT

To assess the persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies produced by natural infection and describe the serological characteristics over 7 months after symptom onset among coronavirus disease 2019 (COVID-19) patients by age and severity group, we followed up COVID-19 convalescent patients confirmed from 1 January to 20 March 2020 in Jiangsu, China and collected serum samples for testing IgM/IgG and neutralizing antibodies against SARS-CoV-2 between 26 August and 28 October 2020. In total, 284 recovered participants with COVID-19 were enrolled in our study. Patients had a mean age of 46.72 years (standard deviation [SD], 17.09), and 138 (48.59%) were male. The median follow-up time after symptom onset was 225.5 (interquartile range [IQR], 219 to 232) days. During the follow-up period (162 to 282 days after symptom onset), the seropositive rate of IgM fluctuated around 25.70% (95% confidence interval [CI], 20.72% to 31.20%) and that of IgG fluctuated around 79.93% (95% CI, 74.79% to 84.43%). Of the 284 patients, 64 participants were tested when discharged from hospital. Compared with that at the acute phase, the IgM/IgG antibody levels and IgM seropositivity have decreased; however, the seropositivity of IgG was not significantly lower at this follow-up (78.13% versus 82.81%). Fifty percent inhibitory dilution (ID50) titers of neutralizing antibody for samples when discharged from hospital (geometric mean titer [GMT], 82; 95% CI, 56 to 121) were significantly higher than those at 6 to 7 months after discharge (GMT, 47; 95% CI, 35 to 63) (P < 0.001). After 7 months from symptom onset, the convalescent COVID-19 patients continued to have high IgG seropositive; however, many plasma samples decreased neutralizing activity. IMPORTANCE The long-term characteristics of anti-SARS-CoV-2 antibodies among COVID-19 patients remain largely unclear. Tracking the longevity of these antibodies can provide a forward-looking reference for monitoring COVID-19. We conducted a comprehensive assessment combining the kinetics of specific and neutralizing antibodies over 7 months with age and disease severity and revealed influencing factors of the protection period of convalescent patients. By observing the long-term antibody levels against SARS-CoV-2 and comparing antibody levels at two time points after symptom onset, we found that the convalescent COVID-19 patients continued to have a high IgG seropositive rate; however, their plasma samples decreased neutralizing activity. These findings provide evidence supporting that the neutralizing activity of SARS-CoV-2-infected persons should be monitored and the administration of vaccine may be needed.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , SARS-CoV-2/immunology , Adolescent , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Child , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Immunologic Memory/immunology , Male , Middle Aged , Young Adult
5.
Med Sci Monit ; 27: e929986, 2021 Apr 17.
Article in English | MEDLINE | ID: covidwho-1148369

ABSTRACT

BACKGROUND This retrospective study aimed to investigate the factors associated with disease severity and patient outcomes in 631 patients with COVID-19 who were reported to the Jiangsu Commission of Health between January 1 and March 20, 2020. MATERIAL AND METHODS We conducted an epidemiological investigation enrolling 631 patients with laboratory-confirmed COVID-19 from our clinic from January to March 2020. Patients' information was collected through a standard questionnaire. Then, we described the patients' epidemiological characteristics, analyzed risk factors associated with disease severity, and assessed causes of zero mortality. Additionally, some key technologies for epidemic prevention and control were identified. RESULTS Of the 631 patients, 8.46% (n=53) were severe cases, and no deaths were recorded (n=0). The epidemic of COVID-19 has gone through 4 stages: a sporadic phase, an exponential growth phase, a peak plateau phase, and a declining phase. The proportion of severe cases was significantly different among the 4 stages and 13 municipal prefectures (P<0.001). Factors including age >65 years old, underlying medical conditions, highest fever >39.0°C, dyspnea, and lymphocytopenia (<1.0×109/L) were early warning signs of disease severity (P<0.05). In contrast, earlier clinic visits were associated with better patient outcomes (P=0.029). Further, the viral load was a potentially useful marker associated with COVID-19 infection severity. CONCLUSIONS The study findings from the beginning of the COVID-19 epidemic in Jiangsu Province, China showed that patients who were more than 65 years of age and with comorbidities and presented with a fever of more than 39.0°C developed more severe disease. However, mortality was prevented in this initial patient population by early supportive clinical management.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2 , Adult , Aged , COVID-19/diagnosis , COVID-19/history , COVID-19/virology , China/epidemiology , Comorbidity , Female , Geography, Medical , History, 21st Century , Humans , Male , Middle Aged , Mortality , Open Reading Frames , Population Surveillance , RNA, Viral , Real-Time Polymerase Chain Reaction , Risk Factors , SARS-CoV-2/classification , SARS-CoV-2/genetics , Seasons , Severity of Illness Index , Viral Load
6.
Epidemiol Infect ; 149: e48, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-1129262

ABSTRACT

To understand the characteristics and influencing factors related to cluster infections in Jiangsu Province, China, we investigated case reports to explore transmission dynamics and influencing factors of scales of cluster infection. The effectiveness of interventions was assessed by changes in the time-dependent reproductive number (Rt). From 25th January to 29th February, Jiangsu Province reported a total of 134 clusters involving 617 cases. Household clusters accounted for 79.85% of the total. The time interval from onset to report of index cases was 8 days, which was longer than that of secondary cases (4 days) (χ2 = 22.763, P < 0.001) and had a relationship with the number of secondary cases (the correlation coefficient (r) = 0.193, P = 0.040). The average interval from onset to report was different between family cluster cases (4 days) and community cluster cases (7 days) (χ2 = 28.072, P < 0.001). The average time interval from onset to isolation of patients with secondary infection (5 days) was longer than that of patients without secondary infection (3 days) (F = 9.761, P = 0.002). Asymptomatic patients and non-familial clusters had impacts on the size of the clusters. The average reduction in the Rt value in family clusters (26.00%, 0.26 ± 0.22) was lower than that in other clusters (37.00%, 0.37 ± 0.26) (F = 4.400, P = 0.039). Early detection of asymptomatic patients and early reports of non-family clusters can effectively weaken cluster infections.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Child , Child, Preschool , China/epidemiology , Cluster Analysis , Female , Humans , Infant , Male , Middle Aged , Young Adult
7.
Transbound Emerg Dis ; 68(2): 773-781, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-690269

ABSTRACT

We investigated an outbreak of COVID-19 infection, which was traced back to a bathing pool at an entertainment venue, to explore the epidemiology of the outbreak, understand the transmissibility of the virus and analyse the influencing factors. Contact investigation and management were conducted to identify potential cases. Epidemiological investigation was carried out to determine the epidemiological and demographic characteristics of the outbreak. We estimated the secondary attack rate (SAR), incubation time and time-dependent reproductive number (Rt ) and explored the predisposing factors for cluster infection. The incubation time was 5.4 days and the serial interval (SI) was 4.4 days, with the rate of negative-valued SIs at 24.5%. The SAR at the bathing pool (3.3%) was relatively low due to its high temperature and humidity. The SAR was higher in the colleagues' cluster (20.5%) than in the family cluster (11.8%). Super-spreaders had a longer isolation delay time (p = .004). The Rt of the cluster decreased from the highest value of 3.88 on January 27, 2020 to 1.22 on February 6. Our findings suggest that the predisposing factors of the outbreak included close contact with an infected person, airtight and crowded spaces, temperature and humidity in the space and untimely isolation of patients and quarantine of contacts at the early stage of transmission. Measures to reduce the risk of infection at these gatherings and subsequent tracking of close contacts were effective.


Subject(s)
COVID-19/diagnosis , Disease Outbreaks , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/transmission , Child , Child, Preschool , China/epidemiology , Contact Tracing , Disease Transmission, Infectious , Female , Humans , Infant , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL