Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Environ Pollut ; 309: 119767, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-1936393

ABSTRACT

China is the largest CO2 emitting country on Earth. During the COVID-19 pandemic, China implemented strict government control measures on both outdoor activity and industrial production. These control measures, therefore, were expected to significantly reduce anthropogenic CO2 emissions. However, large discrepancies still exist in the estimated anthropogenic CO2 emission reduction rate caused by COVID-19 restrictions, with values ranging from 10% to 40% among different approaches. Here, we selected Nanchang city, located in eastern China, to examine the impact of COVID-19 on CO2 emissions. Continuous atmospheric CO2 and ground-level CO observations from January 1st to April 30th, 2019 to 2021 were used with the WRF-STILT atmospheric transport model and a priori emissions. And a multiplicative scaling factor and Bayesian inversion method were applied to constrain anthropogenic CO2 emissions before, during, and after the COVID-19 pandemic. We found a 37.1-40.2% emission reduction when compared to the COVID-19 pandemic in 2020 with the same period in 2019. Carbon dioxide emissions from the power industry and manufacturing industry decreased by 54.5% and 18.9% during the pandemic period. The power industry accounted for 73.9% of total CO2 reductions during COVID-19. Further, emissions in 2021 were 14.3-14.9% larger than in 2019, indicating that economic activity quickly recovered to pre-pandemic conditions.

2.
Virology ; 572: 55-63, 2022 07.
Article in English | MEDLINE | ID: covidwho-1895488

ABSTRACT

Porcine bocavirus (PBoV) was first identified in Sweden in 2009. Due to its association with healthy as well as diseased pigs, its role in clinical disease has not been reported yet. In the present study, bocavirus was identified from the intestinal content of a 30-day-old piglet and its whole genome was constructed and phylogenetic analysis was carried on. The pathogenesis of bocavirus was investigated following orogastric inoculation of the colostrum-deprived newborn piglet with bacteria free intestinal content. The bocavirus-inoculated piglets developed diarrhea, shed virus in the rectal swabs from 18 h post inoculation and developed macroscopic and microscopic lesions in small intestine with virus confirmed by conventional PCR. This study experimentally confirmed pathogenicity and characterized bocavirus as the etiological agent of diarrhea in the colostrum-deprived newborn piglets. On phylogenetic analysis, it was observed that this virus has long evolutionary history with subsequent mutation as well as better host adaptation. This study highlights the importance of identifying bocavirus as the etiological agent of viral diarrhea that could threaten livestock, public health as well as economic loss.


Subject(s)
Bocavirus , Parvoviridae Infections , Swine Diseases , Animals , Bocavirus/genetics , China , Diarrhea/veterinary , Evolution, Molecular , Parvoviridae Infections/veterinary , Phylogeny , Swine
3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-337040

ABSTRACT

Venous thromboembolism (VTE) occurs in up to one third patients with COVID-19. VTE and COVID-19 may share a common genetic architecture in etiology, which has not been comprehensively investigated. In this study, we leveraged summary-level data from the latest COVID-19 host genetics consortium and UK Biobank to study the genetic commonality between COVID-19 traits and VTE. We found a positive genetic correlation between COVID-19 hospitalization and VTE (r g = 0.2320, P-value= 0.0092). The cross-trait analysis identified shared genetic loci between VTE and COVID-19 traits, including 8 for severe COVID-19, 11 for COVID-19 hospitalization, and 7 for SARS-CoV-2 infection. We identified seven novel mapped genes ( LINC00970, TSPAN15, ADAMTS13, F5, DNAJB4, SLC39A8 and OBSCN ) that were enriched for expression in the lung tissue, and in coagulation and immune related pathways. Eight genetic loci were found to share causal variants between COVID-19 and VTE, which are localized in the ABO, ADAMTS13 and FUT2 gene regions. Bi-directional Mendelian randomization analysis did not suggest a causal relationship between VTE and COVID-19 traits. Our study advances the understanding of shared genetic etiology of COVID-19 and VTE at the molecular and functional levels.

4.
Front Psychiatry ; 13: 863698, 2022.
Article in English | MEDLINE | ID: covidwho-1809601

ABSTRACT

Objective: As COVID-19 persists around the world, it is necessary to explore the long-term mental health effects in COVID-19 survivors. In this study, we investigated the mental health outcomes of survivors of COVID-19 at 6 and 12 months postdiagnosis. Methods: Posttraumatic stress disorder (PTSD checklist for the DSM-5, PCL-5), depression (PHQ-9), anxiety (Generalized Anxiety Disorder Scale, GAD-7), resilience (Connor-Davidson Resilience Scale, CD-RISC-10), perceived social support (PSSS), personality traits (Chinese Big Five Personality Inventory-15, CBF-PI-15), and sociodemographic information were examined among 511 survivors of COVID-19 (48.1%, females; M age = 56.23 years at first assessment) at 6 and 12 months postdiagnosis. The data were analyzed with Wilcoxon signed rank tests and multivariable logistic regression models. Results: The prevalence of anxiety, depression, and posttraumatic stress disorder (PTSD) at 6 and 12 months after diagnosis was 13.31% and 6.26%; 20.35% and 11.94%; and 13.11% and 6.07%, respectively. The risk factors for all symptoms were as follows: higher neuroticism; lower openness, extraversion, agreeableness, and resilience; greater life disruptions due to COVID-19; poorer living standards; and increased symptoms of PTSD or depression at 6 months postdiagnosis. Conclusion: The mental health of COVID-19 survivors improved between 6 and 12 months postdiagnosis. Mental health workers should pay long-term attention to this group, especially to survivors with risk factors.

5.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329886

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) outbreak was the first pandemic to occur in a fully globalized society. The aims of the study were to explore the state of problematic smartphone use (PSU) and its risk factors during this incident. The problematic smartphone usage, impact of news reports, depression, and anxiety of a total of 77,211 college students were surveyed online during the COVID-19 pandemic. Results The data were analyzed with latent profile analysis (LPA), chi-square test, ANOVA and multiple logistic regression. We found the most support for a three-class model of subgroups. The results of multiple logistic regression show that college students who were female and younger college who experienced positive or negative impact from news reports, and reported higher depression or anxiety scores were more likely to be included in the moderate- or high-risk PSU group than in the low-risk group. However, the positive impact of news coverage was insignificant when the high-risk group was compared with the moderate-risk group. Conclusions These findings provide insights that may help foster and develop appropriate and effective solutions to prevent PSU among college students (young adults), such as paying more attention to girls and individuals with high levels of anxiety and depression in crisis events and providing more positive news coverage during crises.

6.
Front Endocrinol (Lausanne) ; 13: 801260, 2022.
Article in English | MEDLINE | ID: covidwho-1731767

ABSTRACT

Type 2 diabetes (T2D) patients with SARS-CoV-2 infection hospitalized develop an acute cardiovascular syndrome. It is urgent to elucidate underlying mechanisms associated with the acute cardiac injury in T2D hearts. We performed bioinformatic analysis on the expression profiles of public datasets to identify the pathogenic and prognostic genes in T2D hearts. Cardiac RNA-sequencing datasets from db/db or BKS mice (GSE161931) were updated to NCBI-Gene Expression Omnibus (NCBI-GEO), and used for the transcriptomics analyses with public datasets from NCBI-GEO of autopsy heart specimens with COVID-19 (5/6 with T2D, GSE150316), or dead healthy persons (GSE133054). Differentially expressed genes (DEGs) and overlapping homologous DEGs among the three datasets were identified using DESeq2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses were conducted for event enrichment through clusterProfile. The protein-protein interaction (PPI) network of DEGs was established and visualized by Cytoscape. The transcriptions and functions of crucial genes were further validated in db/db hearts. In total, 542 up-regulated and 485 down-regulated DEGs in mice, and 811 up-regulated and 1399 down-regulated DEGs in human were identified, respectively. There were 74 overlapping homologous DEGs among all datasets. Mitochondria inner membrane and serine-type endopeptidase activity were further identified as the top-10 GO events for overlapping DEGs. Cardiac CAPNS1 (calpain small subunit 1) was the unique crucial gene shared by both enriched events. Its transcriptional level significantly increased in T2D mice, but surprisingly decreased in T2D patients with SARS-CoV-2 infection. PPI network was constructed with 30 interactions in overlapping DEGs, including CAPNS1. The substrates Junctophilin2 (Jp2), Tnni3, and Mybpc3 in cardiac calpain/CAPNS1 pathway showed less transcriptional change, although Capns1 increased in transcription in db/db mice. Instead, cytoplasmic JP2 significantly reduced and its hydrolyzed product JP2NT exhibited nuclear translocation in myocardium. This study suggests CAPNS1 is a crucial gene in T2D hearts. Its transcriptional upregulation leads to calpain/CAPNS1-associated JP2 hydrolysis and JP2NT nuclear translocation. Therefore, attenuated cardiac CAPNS1 transcription in T2D patients with SARS-CoV-2 infection highlights a novel target in adverse prognostics and comprehensive therapy. CAPNS1 can also be explored for the molecular signaling involving the onset, progression and prognostic in T2D patients with SARS-CoV-2 infection.


Subject(s)
COVID-19/epidemiology , Computational Biology , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Diabetic Cardiomyopathies/epidemiology , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Animals , Calpain/genetics , Calpain/physiology , Comorbidity , Diabetes Mellitus, Type 2/physiopathology , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/physiopathology , Humans , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Middle Aged , Mitochondria, Heart/ultrastructure , Muscle Proteins/metabolism , Myocardium/chemistry , Myocardium/metabolism , Myocardium/ultrastructure , Prognosis , Sequence Analysis, RNA , Transcriptome
7.
Arch Virol ; 167(2): 493-499, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1712247

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating infectious diseases in the global swine industry. A rapid and sensitive on-site detection method for PRRS virus (PRRSV) is critically important for diagnosing PRRS. In this study, we established a method that combines reverse transcription recombinase polymerase amplification (RT-RPA) with a lateral flow dipstick (LFD) for detecting North American PRRSV (PRRSV-2). The primers and probe were designed based on the conserved region of all complete PRRSV-2 genomic sequences available in China (n = 512) from 1996 to 2020. The detection limit of the assay was 5.6 × 10-1 median tissue culture infection dose (TCID50) per reaction within 30 min at 42 °C, which was more sensitive than that of reverse transcription polymerase chain reaction (RT-PCR) (5.6 TCID50 per reaction). The assay was highly specific for the epidemic lineages of PRRSV-2 in China and did not cross-react with pseudorabies virus, porcine circovirus 2, classical swine fever virus, or porcine epidemic diarrhea virus. The assay performance was evaluated by testing 179 samples and comparing the results with those of quantitative RT-PCR (RT-qPCR). The results showed that the detection coincidence rate of RT-RPA and RT-qPCR was 100% when the cycle threshold values of RT-qPCR were < 32. The assay provides a new alternative for simple and reliable detection of PRRSV-2 and has great potential for application in the field.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Porcine Reproductive and Respiratory Syndrome/diagnosis , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/metabolism , Recombinases , Reverse Transcription , Sensitivity and Specificity , Swine
8.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-324302

ABSTRACT

Background: The ongoing outbreak of Coronavirus disease 2019 (COVID-19) has led to declaration of public health emergency of international concern by World Health Organization and the first-level public health emergency response in China. We aimed to share the Joint Prevention and Control Mechanism taken in Mainland China and evaluate the effectiveness. Methods: A powerful Joint Prevention and Control Mechanism was adopted to fight against COVID-19 in Mainland China. Data were collected from the daily epidemic reports released by the national and provincial health commissions of China from January 21 to April 6, 2020. Global data were collected from daily situation reports by World Health Organization. Results: As of April 6, 2020, there were 81,740 confirmed COVID-19 cases (32 new) in Mainland China. The case fatality ratio was 4.74% and 0.85% in and outside Hubei respectively. It is gratifying to see that there were up to 22 provinces reporting zero new infections, but it can’t be ignored that there were 1,196,651 confirmed cases (68,700 new) reported in over 221 countries and territories outside China and the total death number were 69,274, nowadays China is facing great challenges of imported cases. Conclusions: Great achievements have been made in controlling the spread of COVID-19 in Mainland China, but it is still a major challenge worldwide. The comprehensive and powerful control measures taken by Mainland China have proved to be effective and might be applicable to other regions.

9.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-318925

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused an unprecedented health crisis for the global. Digital contact tracing, as a transmission intervention measure, has shown its effectiveness on pandemic control. Despite intensive research on digital contact tracing, existing solutions can hardly meet users' requirements on privacy and convenience. In this paper, we propose BU-Trace, a novel permissionless mobile system for privacy-preserving intelligent contact tracing based on QR code and NFC technologies. First, a user study is conducted to investigate and quantify the user acceptance of a mobile contact tracing system. Second, a decentralized system is proposed to enable contact tracing while protecting user privacy. Third, an intelligent behavior detection algorithm is designed to ease the use of our system. We implement BU-Trace and conduct extensive experiments in several real-world scenarios. The experimental results show that BU-Trace achieves a privacy-preserving and intelligent mobile system for contact tracing without requesting location or other privacy-related permissions.

10.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-315265

ABSTRACT

Background: The prevalence of overweight and obesity among children and adolescents is steadily increasing and has become a public health concern. Lifestyle changes due to the COVID-19 pandemic may have an impact on the status of overweight and obesity among children and adolescents. This study aimed to analyze the effect of the COVID-19 pandemic on the status of overweight and obesity among children and adolescents. Methods: : We retrospectively analyzed the children and adolescents who visited the West China Second University Hospital, Sichuan University from January 1st, 2018 to June 30st, 2020. We included obese children who met the criteria and divided them into 5 groups with 6 months as the unit according to the time of their visit. The national lockdown time was used as a segmentation point to study the changes of obesity status in the same children before and after lockdown. Results: : A total of 140,526 children and adolescents visited the outpatient department from January 1st, 2018 to June 30st, 2020, and 1,740 of them were diagnosed as overweight or obese at the time of their first visit. The study found that there was a significant difference in the obesity rate among the groups (P < 0.01). However, there was no difference between January to June, 2020 and the previous period. Except for the increased incidence of VD deficiency (P < 0.01), the severity of obesity, insulin resistance and dyslipidemia of obese children did not change before and after COVID-19 (P=0.303, 0.663, 0.106, respectively). A total of 65 obese children were followed up in the outpatient department before and after COVID-19 lockdown. There were no significant differences in BMI-SDS, HOMA-IR and 25(OH)VD among obese children before and after lockdown (p = 0.626, 0.386, 0.251, respectively). Conclusions: : The available evidence cannot prove that the COVID-19 pandemic affects the status of overweight and obesity among children and adolescents who visited hospitals. It may be related to the multiple effects of the COVID-19 pandemic on children.

11.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-311943

ABSTRACT

The magnitude of SARS-CoV-2 infection, the dynamic changes of immune parameters in patients with the novel coronavirus disease (COVID-19) and their correlation with the disease severity remain unclear. The clinical and laboratory results from 154 confirmed COVID-19 patients were collected. The SARS-CoV-2 RNA levels in patients were estimated using the Ct values of specific RT-PCR tests. The lymphocyte subsets and cytokines profiles in the peripheral blood were analyzed by flow cytometry and specific immunoassays. 154 confirmed COVID-19 patients were clinically examined up to 4 weeks after admission. The initial SARS-CoV-2 RNA Ct values at admission varied but were comparable in the patient groups classified according to the age, gender, underlying diseases, and disease severity. Three days after admission significant higher Ct values were found in severe cases. Significantly reduced counts of T cells and T cell subsets were found in patients with old age and underlying diseases at admission and were characteristic for the development of severe COVID-19. Severe COVID-19 developed preferentially in patients with underlying compromised immunity and was not associated with initial virus levels. Higher SARS-CoV-2 RNA levels in severe cases were apparently a result of impaired immune control associated with dysregulation of inflammation.

12.
Internet Research ; 32(1):90-119, 2022.
Article in English | ProQuest Central | ID: covidwho-1626537

ABSTRACT

PurposeThis paper aims to investigate the impacts of rumors' information characteristics on people's believing and spreading of rumors online.Design/methodology/approachThis study employed a mixed-methods approach by combining qualitative and quantitative methods. In study 1, the authors explored different types of rumors and their information source characteristics through qualitative research. In study 2, the authors utilized the findings from study 1 to develop an empirical model to verify the impact of these characteristics on the public's behaviors of believing and spreading rumors by content analysis and quantitative research.FindingsThe results show that five information source characteristics – credibility, professionalism, attractiveness, mystery and concreteness – influence the spreading effect of different types of rumors.Research limitations/implicationsThis study contributes to rumor spreading research by deepening the theory of information source characteristics and adding to the emerging literature on the COVID-19 pandemic.Practical implicationsInsights from this research offer important practical implications for policymakers and online-platform operators by highlighting how to suppress the spread of rumors, particularly those associated with COVID-19.Originality/valueThis research introduces the theory of information source characteristics into the field of rumor spreading and adopts a mixed-methods approach, taking COVID-19 rumors as a typical case, which provides a unique perspective for a deeper understanding of rumor spreading's antecedences.

13.
ACS Synth Biol ; 11(1): 383-396, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1599309

ABSTRACT

Rapid diagnosis based on naked-eye colorimetric detection remains challenging, but it could build new capacities for molecular point-of-care testing (POCT). In this study, we evaluated the performance of 16 types of single-stranded DNA-fluorophore-quencher (ssDNA-FQ) reporters for use with clusters of regularly spaced short palindrome repeats (CRISPR)/Cas12a-based visual colorimetric assays. Among them, nine ssDNA-FQ reporters were found to be suitable for direct visual colorimetric detection, with especially very strong performance using ROX-labeled reporters. We optimized the reaction concentrations of these ssDNA-FQ reporters for a naked-eye read-out of assay results (no transducing component required for visualization). In particular, we developed a convolutional neural network algorithm to standardize and automate the analytical colorimetric assessment of images and integrated this into the MagicEye mobile phone software. A field-deployable assay platform named RApid VIsual CRISPR (RAVI-CRISPR) based on a ROX-labeled reporter with isothermal amplification and CRISPR/Cas12a targeting was established. We deployed RAVI-CRISPR in a single tube toward an instrument-less colorimetric POCT format that required only a portable rechargeable hand warmer for incubation. The RAVI-CRISPR was successfully used for the high-sensitivity detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and African swine fever virus (ASFV). Our study demonstrates this RAVI-CRISPR/MagicEye system to be suitable for distinguishing different pathogenic nucleic acid targets with high specificity and sensitivity as the simplest-to-date platform for rapid pen- or bed-side testing.


Subject(s)
African Swine Fever Virus/genetics , African Swine Fever , COVID-19 Nucleic Acid Testing , COVID-19 , CRISPR-Cas Systems , SARS-CoV-2/genetics , African Swine Fever/diagnosis , African Swine Fever/genetics , Animals , COVID-19/diagnosis , COVID-19/genetics , Colorimetry , Humans , Swine
14.
Open Forum Infect Dis ; 8(11): ofab499, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1584163

ABSTRACT

Background: Community-acquired pneumonia (CAP) is a leading infectious cause of hospitalization and death worldwide. Knowledge about the incidence and etiology of CAP in China is fragmented. Methods: A multicenter study performed at 4 hospitals in 4 regions in China and clinical samples from CAP patients were collected and used for pathogen identification from July 2016 to June 2019. Results: A total of 1674 patients were enrolled and the average annual incidence of hospitalized CAP was 18.7 (95% confidence interval, 18.5-19.0) cases per 10000 people. The most common viral and bacterial agents found in patients were respiratory syncytial virus (19.2%) and Streptococcus pneumoniae (9.3%). The coinfections percentage was 13.8%. Pathogen distribution displayed variations within age groups as well as seasonal and regional differences. The severe acute respiratory syndrome coronavirus 2 was not detected. Respiratory virus detection was significantly positively correlated with air pollutants (including particulate matter ≤2.5 µm, particulate matter ≤10 µm, nitrogen dioxide, and sulfur dioxide) and significantly negatively correlated with ambient temperature and ozone content; bacteria detection was opposite. Conclusions: The hospitalized CAP incidence in China was higher than previously known. CAP etiology showed that differences in age, seasons, regions, and respiratory viruses were detected at a higher rate than bacterial infection overall. Air pollutants and temperature have an influence on the detection of pathogens.

15.
EBioMedicine ; 75: 103736, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1568649

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has killed millions of people worldwide. The current crisis has created an unprecedented demand for rapid test of SARS-CoV-2 infection. METHODS: Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a fast and convenient method to amplify and identify the transcripts of a targeted pathogen. However, the sensitivity and specificity of RT-LAMP were generally regarded as inferior when compared with the gold standard RT-qPCR. To address this issue, we combined bioinformatic and experimental analyses to improve the assay performance for COVID-19 diagnosis. FINDINGS: First, by experimental screening as well as high-throughput sequencing studies, we discovered new primer features that impacted LAMP sensitivity and specificity. These features were then used to build an improved bioinformatics algorithm to design LAMP primers targeting SARS-CoV-2. We further rigorously validated these new assays for their efficacy and specificity. We demonstrated that multiplexed RT-LAMP assay could directly detect as low as 1.5 copies/µL of SARS-CoV-2 particles in saliva, without the need of RNA isolation. We further tested this ultra-sensitive and specific RT-LAMP assay using saliva samples from COVID-19 patients. Clinical validation results indicated that the new RT-LAMP assay was comparable to standard RT-qPCR in overall assay sensitivity and specificity. INTERPRETATION: In summary, our new LAMP primer design algorithm along with the validated assays provide a fast and reliable method for the diagnosis of COVID-19 cases. FUNDING: National Institutes of Health.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva/virology , COVID-19/diagnosis , COVID-19/genetics , Humans , Sensitivity and Specificity
16.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-296348

ABSTRACT

Rapid diagnosis based on naked-eye colorimetric detection remains challenging, but it could build new capacities for molecular point-of-care testing (POCT). In this study, we evaluated the performance of 16 types of single-stranded DNA-fluorophore-quencher (ssDNA-FQ) reporters for use with CRISPR/Cas12a based visual colorimetric assays. Among them, 9 ssDNA-FQ reporters were found to be suitable for direct visual colorimetric detection, with especially very strong performance using ROX-labeled reporters. We optimized the reaction concentrations of these ssDNA-FQ reporters for naked-eye read-out of assay results (no transducing component required for visualization). Subsequently, we developed a convolutional neural network algorithm standardize and to automate the analytical colorimetric assessment of images and integrated this into the MagicEye mobile phone software. A field-deployable assay platform named RApid VIsual CRISPR (RAVI-CRISPR) based on a ROX-labeled reporter with isothermal amplification and CRISPR/Cas12a targeting was established. We deployed RAVI-CRISPR in a single tube towards an instrument-less colorimetric POCT format that requires only a portable rechargeable hand warmer for incubation. The RAVI-CRISPR was successfully used for the single-copy detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and African swine fever virus (ASFV). Our study demonstrates this novel RAVI-CRISPR system for distinguishing different pathogenic nucleic acid targets with high specificity and sensitivity as the simplest-to-date platform for rapid pen-side testing.

17.
Non-conventional in English | [Unspecified Source], Grey literature | ID: grc-750632

ABSTRACT

Background: A recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), which began in Wuhan, China, with a high level of human-to-human transmission has been reported. There are limited data available on Coronavirus Disease 2019 (COVID-19) patients with hematological malignancies with more than 60 days of follow-up. This study describes the clinical characteristics, including multiple recurrences of COVID-19, in a patient with chronic lymphocytic leukemia (CLL) during 69 days of follow-up. Case Presentation: A 72-year-old female was admitted to hospital isolation after being infected with COVID-19 as part of a family cluster on January 30, 2020. Apart from SARS-Cov-2 virus infection, laboratory results revealed lymphocytosis of uncertain etiology and abnormal distribution of T lymphocytes. On blood smears, small blue lymphocytes with scant cytoplasm were observed, and the presence of high levels of circulating clonal B cells was also demonstrated by flow cytometry. The patient was diagnosed with COVID-19 and CLL. Among her family members, she had the highest viral loads and the fastest progression on lung injury and developed severe pneumonia. Serological results showed she had both 2019-nCoV-specific IgM and IgG antibodies;however, only IgG antibodies were detected in her husband's plasma. Results: A combination regimen of antiviral therapy and high-dose intravenous immunoglobulin (IVIG) in the early stage seemed to be effective for treating CLL and SARS-Cov-2 infection. Because of the low humoral immune response, the CLL patient could not effectively clear the SARS-Cov-2 infection and suffered from recurrence twice during the 69-day follow-up. Conclusion: In CLL, a neoplastic antigen-specific B-cell clone proliferates, and the progeny cells accumulate and outgrow other B cells, leading to immune deficiency. Considering the low humoral immune response and ineffective clearance of SARS-Cov-2 in CLL patients, the follow-up and home quarantine period should be extended. We need further studies to clarify suspending or continuing CLL therapy during COVID infection. For those patients who are prone to progression to severe disease, administering humoral immunity therapies can help to prevent disease progression and quickly meet the cure criteria.

18.
Plant Biotechnol J ; 19(10): 1921-1936, 2021 10.
Article in English | MEDLINE | ID: covidwho-1452892

ABSTRACT

The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.


Subject(s)
Artemisia annua , Communicable Diseases , Pharmaceutical Preparations , Animals , Humans , Molecular Farming , Plants, Edible
19.
J Med Virol ; 93(10): 5998-6007, 2021 10.
Article in English | MEDLINE | ID: covidwho-1432442

ABSTRACT

In the context of the coronavirus disease 2019 pandemic, we investigated the epidemiological and clinical characteristics of a young patient infected by avian influenza A (H5N6) virus in Anhui Province, East China, and analyzed genomic features of the pathogen in 2020. Through the cross-sectional investigation of external environment monitoring (December 29-31, 2020), 1909 samples were collected from Fuyang City. It was found that the positive rate of H5N6 was higher than other areas obviously in Tianma poultry market, where the case appeared. In addition, dual coinfections were detected with a 0.057% polymerase chain reaction positive rate the surveillance years. The virus was the clade 2.3.4.4, which was most likely formed by genetic reassortment between H5N6 and H9N2 viruses. This study found that the evolution rates of the hemagglutinin and neuraminidase genes of the virus were higher than those of common seasonal influenza viruses. The virus was still highly pathogenic to poultry and had a preference for avian receptor binding.


Subject(s)
COVID-19/epidemiology , Influenza A virus/isolation & purification , Influenza in Birds/virology , Influenza, Human/virology , Animals , Child, Preschool , China , Female , Genome, Viral/genetics , Humans , Influenza A virus/classification , Influenza A virus/genetics , Influenza, Human/diagnosis , Mutation , Phylogeny , Poultry/virology , Reassortant Viruses/classification , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , SARS-CoV-2 , Viral Proteins/genetics
20.
Atmos Environ (1994) ; 264: 118715, 2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1415204

ABSTRACT

In recent years, nitrate plays an increasingly important role in haze pollution and strict emission control seems ineffective in reducing nitrate pollution in China. In this study, observations of gaseous and particulate pollutants during the COVID-19 lockdown, as well as numerical modelling were integrated to explore the underlying causes of the nonlinear response of nitrate mitigation to nitric oxides (NOx) reduction. We found that, due to less NOx titration effect and the transition of ozone (O3) formation regime caused by NOx emissions reduction, a significant increase of O3 (by ∼ 69%) was observed during the lockdown period, leading to higher atmospheric oxidizing capacity and facilitating the conversion from NOx to oxidation products like nitric acid (HNO3). It is proven by the fact that 26-61% reduction of NOx emissions only lowered surface HNO3 by 2-3% in Hebi and Nanjing, eastern China. In addition, ammonia concentration in Hebi and Nanjing increased by 10% and 40% during the lockdown, respectively. Model results suggested that the increasing ammonia can promote the gas-particle partition and thus enhance the nitrate formation by up to 20%. The enhanced atmospheric oxidizing capacity together with increasing ammonia availability jointly promotes the nitrate formation, thereby partly offsetting the drop of NOx. This work sheds more lights on the side effects of a sharp NOx reduction and highlights the importance of a coordinated control strategy.

SELECTION OF CITATIONS
SEARCH DETAIL