Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Nat Commun ; 12(1): 4515, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1327196

ABSTRACT

The in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for 'reverse phenotyping'. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.


Subject(s)
COVID-19/immunology , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , T-Lymphocytes/metabolism , Aged , Aged, 80 and over , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , COVID-19/epidemiology , COVID-19/virology , Cells, Cultured , Cohort Studies , Female , Humans , Male , Middle Aged , Pandemics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/physiology , T-Lymphocytes/virology
2.
Nature ; 594(7862): 246-252, 2021 06.
Article in English | MEDLINE | ID: covidwho-1180252

ABSTRACT

The emergence and global spread of SARS-CoV-2 has resulted in the urgent need for an in-depth understanding of molecular functions of viral proteins and their interactions with the host proteome. Several individual omics studies have extended our knowledge of COVID-19 pathophysiology1-10. Integration of such datasets to obtain a holistic view of virus-host interactions and to define the pathogenic properties of SARS-CoV-2 is limited by the heterogeneity of the experimental systems. Here we report a concurrent multi-omics study of SARS-CoV-2 and SARS-CoV. Using state-of-the-art proteomics, we profiled the interactomes of both viruses, as well as their influence on the transcriptome, proteome, ubiquitinome and phosphoproteome of a lung-derived human cell line. Projecting these data onto the global network of cellular interactions revealed crosstalk between the perturbations taking place upon infection with SARS-CoV-2 and SARS-CoV at different levels and enabled identification of distinct and common molecular mechanisms of these closely related coronaviruses. The TGF-ß pathway, known for its involvement in tissue fibrosis, was specifically dysregulated by SARS-CoV-2 ORF8 and autophagy was specifically dysregulated by SARS-CoV-2 ORF3. The extensive dataset (available at https://covinet.innatelab.org ) highlights many hotspots that could be targeted by existing drugs and may be used to guide rational design of virus- and host-directed therapies, which we exemplify by identifying inhibitors of kinases and matrix metalloproteases with potent antiviral effects against SARS-CoV-2.


Subject(s)
COVID-19/metabolism , Host-Pathogen Interactions , Proteome/metabolism , Proteomics , SARS Virus/pathogenicity , SARS-CoV-2/pathogenicity , Severe Acute Respiratory Syndrome/metabolism , Animals , Antiviral Agents/pharmacology , Autophagy/drug effects , COVID-19/immunology , COVID-19/virology , Cell Line , Datasets as Topic , Drug Evaluation, Preclinical , Host-Pathogen Interactions/immunology , Humans , Matrix Metalloproteinase Inhibitors/pharmacology , Phosphorylation , Protein Interaction Maps , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational , Proteome/chemistry , SARS Virus/immunology , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Transforming Growth Factor beta/metabolism , Ubiquitination , Viral Proteins/chemistry , Viral Proteins/metabolism , Viroporin Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL