Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-324770

ABSTRACT

Given the existing COVID-19 pandemic worldwide, it is critical to systematically study the interactions between hosts and coronaviruses including SARS-Cov, MERS-Cov, and SARS-CoV-2 (cause of COVID-19). We first created four host-pathogen interaction (HPI)-Outcome postulates, and generated a HPI-Outcome model as the basis for understanding host-coronavirus interactions (HCI) and their relations with the disease outcomes. We hypothesized that ontology can be used as an integrative platform to classify and analyze HCI and disease outcomes. Accordingly, we annotated and categorized different coronaviruses, hosts, and phenotypes using ontologies and identified their relations. Various COVID-19 phenotypes are hypothesized to be caused by the backend HCI mechanisms. To further identify the causal HCI-outcome relations, we collected 35 experimentally-verified HCI protein-protein interactions (PPIs), and applied literature mining to identify additional host PPIs in response to coronavirus infections. The results were formulated in a logical ontology representation for integrative HCI-outcome understanding. Using known PPIs as baits, we also developed and applied a domain-inferred prediction method to predict new PPIs and identified their pathological targets on multiple organs. Overall, our proposed ontology-based integrative framework combined with computational predictions can be used to support fundamental understanding of the intricate interactions between human patients and coronaviruses (including SARS-CoV-2) and their association with various disease outcomes.

2.
Vaccine X ; : 100139, 2021 Dec 28.
Article in English | MEDLINE | ID: covidwho-1587101

ABSTRACT

The development of SARS-CoV-2 vaccines during the COVID-19 pandemic has prompted the emergence of COVID-19 vaccine data. Timely access to COVID-19 vaccine information is crucial to researchers and public. To support more comprehensive annotation, integration, and analysis of COVID-19 vaccine information, we have developed Cov19VaxKB, a knowledge-focused COVID-19 vaccine database (http://www.violinet.org/cov19vaxkb/). Cov19VaxKB features comprehensive lists of COVID-19 vaccines, vaccine formulations, clinical trials, publications, news articles, and vaccine adverse event case reports. A web-based query interface enables comparison of product information and host responses among various vaccines. The knowledge base also includes a vaccine design tool for predicting vaccine targets and a statistical analysis tool that identifies enriched adverse events for FDA-authorized COVID-19 vaccines based on VAERS case report data. To support data exchange, Cov19VaxKB is synchronized with Vaccine Ontology and the Vaccine Investigation and Online Information Network (VIOLIN) database. The data integration and analytical features of Cov19VaxKB can facilitate vaccine research and development while also serving as a useful reference for the public.

3.
J Biomed Semantics ; 12(1): 18, 2021 08 28.
Article in English | MEDLINE | ID: covidwho-1376597

ABSTRACT

BACKGROUND: With COVID-19 still in its pandemic stage, extensive research has generated increasing amounts of data and knowledge. As many studies are published within a short span of time, we often lose an integrative and comprehensive picture of host-coronavirus interaction (HCI) mechanisms. As of early April 2021, the ImmPort database has stored 7 studies (with 6 having details) that cover topics including molecular immune signatures, epitopes, and sex differences in terms of mortality in COVID-19 patients. The Coronavirus Infectious Disease Ontology (CIDO) represents basic HCI information. We hypothesize that the CIDO can be used as the platform to represent newly recorded information from ImmPort leading the reinforcement of CIDO. METHODS: The CIDO was used as the semantic platform for logically modeling and representing newly identified knowledge reported in the 6 ImmPort studies. A recursive eXtensible Ontology Development (XOD) strategy was established to support the CIDO representation and enhancement. Secondary data analysis was also performed to analyze different aspects of the HCI from these ImmPort studies and other related literature reports. RESULTS: The topics covered by the 6 ImmPort papers were identified to overlap with existing CIDO representation. SARS-CoV-2 viral S protein related HCI knowledge was emphasized for CIDO modeling, including its binding with ACE2, mutations causing different variants, and epitope homology by comparison with other coronavirus S proteins. Different types of cytokine signatures were also identified and added to CIDO. Our secondary analysis of two cohort COVID-19 studies with cytokine panel detection found that a total of 11 cytokines were up-regulated in female patients after infection and 8 cytokines in male patients. These sex-specific gene responses were newly modeled and represented in CIDO. A new DL query was generated to demonstrate the benefits of such integrative ontology representation. Furthermore, IL-10 signaling pathway was found to be statistically significant for both male patients and female patients. CONCLUSION: Using the recursive XOD strategy, six new ImmPort COVID-19 studies were systematically reviewed, the results were modeled and represented in CIDO, leading to the enhancement of CIDO. The enhanced ontology and further seconary analysis supported more comprehensive understanding of the molecular mechanism of host responses to COVID-19 infection.


Subject(s)
Biological Ontologies , COVID-19 , Host Microbial Interactions , Humans , Semantics , Spike Glycoprotein, Coronavirus/metabolism
4.
Nucleic Acids Res ; 49(W1): W671-W678, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1233864

ABSTRACT

Vaccination is one of the most significant inventions in medicine. Reverse vaccinology (RV) is a state-of-the-art technique to predict vaccine candidates from pathogen's genome(s). To promote vaccine development, we updated Vaxign2, the first web-based vaccine design program using reverse vaccinology with machine learning. Vaxign2 is a comprehensive web server for rational vaccine design, consisting of predictive and computational workflow components. The predictive part includes the original Vaxign filtering-based method and a new machine learning-based method, Vaxign-ML. The benchmarking results using a validation dataset showed that Vaxign-ML had superior prediction performance compared to other RV tools. Besides the prediction component, Vaxign2 implemented various post-prediction analyses to significantly enhance users' capability to refine the prediction results based on different vaccine design rationales and considerably reduce user time to analyze the Vaxign/Vaxign-ML prediction results. Users provide proteome sequences as input data, select candidates based on Vaxign outputs and Vaxign-ML scores, and perform post-prediction analysis. Vaxign2 also includes precomputed results from approximately 1 million proteins in 398 proteomes of 36 pathogens. As a demonstration, Vaxign2 was used to effectively analyse SARS-CoV-2, the coronavirus causing COVID-19. The comprehensive framework of Vaxign2 can support better and more rational vaccine design. Vaxign2 is publicly accessible at http://www.violinet.org/vaxign2.


Subject(s)
Drug Design , Internet , Machine Learning , Software , Vaccines , Vaccinology/methods , Antigens, Viral/chemistry , Antigens, Viral/immunology , COVID-19/virology , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Epitopes/chemistry , Epitopes/immunology , Humans , Proteome , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vaccines/chemistry , Vaccines/immunology , Workflow
5.
Front Immunol ; 11: 1581, 2020.
Article in English | MEDLINE | ID: covidwho-688990

ABSTRACT

To ultimately combat the emerging COVID-19 pandemic, it is desired to develop an effective and safe vaccine against this highly contagious disease caused by the SARS-CoV-2 coronavirus. Our literature and clinical trial survey showed that the whole virus, as well as the spike (S) protein, nucleocapsid (N) protein, and membrane (M) protein, have been tested for vaccine development against SARS and MERS. However, these vaccine candidates might lack the induction of complete protection and have safety concerns. We then applied the Vaxign and the newly developed machine learning-based Vaxign-ML reverse vaccinology tools to predict COVID-19 vaccine candidates. Our Vaxign analysis found that the SARS-CoV-2 N protein sequence is conserved with SARS-CoV and MERS-CoV but not from the other four human coronaviruses causing mild symptoms. By investigating the entire proteome of SARS-CoV-2, six proteins, including the S protein and five non-structural proteins (nsp3, 3CL-pro, and nsp8-10), were predicted to be adhesins, which are crucial to the viral adhering and host invasion. The S, nsp3, and nsp8 proteins were also predicted by Vaxign-ML to induce high protective antigenicity. Besides the commonly used S protein, the nsp3 protein has not been tested in any coronavirus vaccine studies and was selected for further investigation. The nsp3 was found to be more conserved among SARS-CoV-2, SARS-CoV, and MERS-CoV than among 15 coronaviruses infecting human and other animals. The protein was also predicted to contain promiscuous MHC-I and MHC-II T-cell epitopes, and the predicted linear B-cell epitopes were found to be localized on the surface of the protein. Our predicted vaccine targets have the potential for effective and safe COVID-19 vaccine development. We also propose that an "Sp/Nsp cocktail vaccine" containing a structural protein(s) (Sp) and a non-structural protein(s) (Nsp) would stimulate effective complementary immune responses.


Subject(s)
Betacoronavirus , Coronavirus Infections , Machine Learning , Pandemics , Pneumonia, Viral , Viral Vaccines , Animals , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Humans , Immunogenicity, Vaccine , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Viral Proteins/genetics , Viral Proteins/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL