Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Transplantation ; 106(7): 1421-1429, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-2051785

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 is associated with high mortality among transplant recipients. Comparative data that define humoral responses to the Oxford-AstraZeneca (AZ) and BNT162b2 (Pfizer-BioNTech) vaccines are limited. METHODS: We recruited 920 kidney transplant patients receiving at least 1 dose of severe acute respiratory syndrome coronavirus 2 vaccine, excluding patients with virus pre-exposure. Serological status was determined with the COVID-SeroKlir ELISA (Kantaro-EKF Diagnostics). Patients with a corrected antibody level of <0.7 AU/mL were considered seronegative. RESULTS: Four hundred ninety-five AZ and 141 Pfizer patients had a sample analyzed after first dose and 593 after second dose (346 AZ versus 247 Pfizer). After first dose, 25.7% of patients seroconverted (26.6% AZ, 22.8% Pfizer). After second dose, 148 (42.8%) of AZ seroconverted compared with 130 (52.6%) of Pfizer (P = 0.02; hazard ratio, 1.48; 95% confidence interval, 1.07-2.06). When negative responders were excluded, Pfizer patients were shown to have significantly higher response than AZ patients (median 2.6 versus 1.78 AU/mL, P = 0.005).Patients on mycophenolate had a reduced seroconversion rate (42.2% versus 61.4%; P < 0.001; hazard ratio, 2.17) and reduced antibody levels (0.47 versus 1.22 AU/mL, P = 0.001), and this effect was dose dependent (P = 0.05). Prednisolone reduced the seroconversion from 58.2% to 43.6% (P = 0.03) among Pfizer but not AZ recipients. Regression analysis showed that antibody levels were reduced by older age (P = 0.002), mycophenolate (P < 0.001), AZ vaccine (versus Pfizer, P = 0.001), and male gender (P = 0.02). Sixteen of 17 serious postvaccine infections occurred to patients who did not seroconvert. CONCLUSIONS: Both seroconversion and antibody levels are lower in AZ compared with Pfizer vaccinated recipients following 2 vaccine doses. Mycophenolate was associated with lower antibody responses in a dose-dependent manner. Serious postvaccine infections occurred among seronegative recipients.


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Antibodies, Viral , BNT162 Vaccine/adverse effects , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Humans , Kidney , Male , Pancreas , RNA, Messenger , SARS-CoV-2
2.
Elife ; 112022 05 19.
Article in English | MEDLINE | ID: covidwho-1856224

ABSTRACT

The outcome of infection is dependent on the ability of viruses to manipulate the infected cell to evade immunity, and the ability of the immune response to overcome this evasion. Understanding this process is key to understanding pathogenesis, genetic risk factors, and both natural and vaccine-induced immunity. SARS-CoV-2 antagonises the innate interferon response, but whether it manipulates innate cellular immunity is unclear. An unbiased proteomic analysis determined how cell surface protein expression is altered on SARS-CoV-2-infected lung epithelial cells, showing downregulation of activating NK ligands B7-H6, MICA, ULBP2, and Nectin1, with minimal effects on MHC-I. This occurred at the level of protein synthesis, could be mediated by Nsp1 and Nsp14, and correlated with a reduction in NK cell activation. This identifies a novel mechanism by which SARS-CoV-2 host-shutoff antagonises innate immunity. Later in the disease process, strong antibody-dependent NK cell activation (ADNKA) developed. These responses were sustained for at least 6 months in most patients, and led to high levels of pro-inflammatory cytokine production. Depletion of spike-specific antibodies confirmed their dominant role in neutralisation, but these antibodies played only a minor role in ADNKA compared to antibodies to other proteins, including ORF3a, Membrane, and Nucleocapsid. In contrast, ADNKA induced following vaccination was focussed solely on spike, was weaker than ADNKA following natural infection, and was not boosted by the second dose. These insights have important implications for understanding disease progression, vaccine efficacy, and vaccine design.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies , Antibodies, Viral , Humans , Killer Cells, Natural , Proteomics
3.
Front Immunol ; 12: 744696, 2021.
Article in English | MEDLINE | ID: covidwho-1485054

ABSTRACT

Background: Little is known about the mortality of hospital-acquired (nosocomial) COVID-19 infection globally. We investigated the risk of mortality and critical care admission in hospitalised adults with nosocomial COVID-19, relative to adults requiring hospitalisation due to community-acquired infection. Methods: We systematically reviewed the peer-reviewed and pre-print literature from 1/1/2020 to 9/2/2021 without language restriction for studies reporting outcomes of nosocomial and community-acquired COVID-19. We performed a random effects meta-analysis (MA) to estimate the 1) relative risk of death and 2) critical care admission, stratifying studies by patient cohort characteristics and nosocomial case definition. Results: 21 studies were included in the primary MA, describing 8,251 admissions across 8 countries during the first wave, comprising 1513 probable or definite nosocomial COVID-19, and 6738 community-acquired cases. Across all studies, the risk of mortality was 1.3 times greater in patients with nosocomial infection, compared to community-acquired (95% CI: 1.005 to 1.683). Rates of critical care admission were similar between groups (Relative Risk, RR=0.74, 95% CI: 0.50 to 1.08). Immunosuppressed patients diagnosed with nosocomial COVID-19 were twice as likely to die in hospital as those admitted with community-acquired infection (RR=2.14, 95% CI: 1.76 to 2.61). Conclusions: Adults who acquire SARS-CoV-2 whilst already hospitalised are at greater risk of mortality compared to patients admitted following community-acquired infection; this finding is largely driven by a substantially increased risk of death in individuals with malignancy or who had undergone transplantation. These findings inform public health and infection control policy and argue for individualised clinical interventions to combat the threat of nosocomial COVID-19, particularly for immunosuppressed groups. Systematic Review Registration: PROSPERO CRD42021249023.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Hospitalization , Immunocompromised Host , Inpatients , SARS-CoV-2 , Adult , COVID-19/therapy , Disease-Free Survival , Humans , Risk Factors , Survival Rate
4.
Curr Opin Allergy Clin Immunol ; 21(6): 525-534, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1447630

ABSTRACT

PURPOSE OF REVIEW: The clinical outcomes from COVID-19 in monogenic causes of predominant antibody deficiency have pivotal implications for our understanding of the antiviral contribution of humoral immunity. This review summarizes the lessons learned from COVID-19 infection in X-linked agammaglobulinemia (XLA) due to genetic defects in Bruton's tyrosine kinase (BTK). RECENT FINDINGS: Key molecular pathways underlying the development of severe COVID-19 are emerging, highlighting the possible contribution of BTK to hyperinflammation. SARS-CoV-2 specific T-cell responses and complement activation appear insufficient to achieve viral clearance in some B-cell deficient individuals. Whilst appearing efficacious in this group, use of convalescent plasma has been recently associated with the evolution of viral escape variants. Early data suggests individuals with XLA can mount a viral-specific T-cell vaccine response, however, the clinical significance of this is still emerging. SUMMARY: In contrast to reports made early in the pandemic, we show XLA patients remain susceptible to severe disease. Persistent infection was common and is likely to carry a significant symptom burden and risk of novel variant evolution. COVID-19 infection in this vulnerable, antibody deficient group due to genetic, therapeutic or disease causes may require prompt and specific intervention for both patient and societal benefit.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinemia/complications , COVID-19/immunology , Genetic Diseases, X-Linked/complications , SARS-CoV-2/immunology , Agammaglobulinemia/genetics , Agammaglobulinemia/immunology , COVID-19/diagnosis , COVID-19/virology , Evolution, Molecular , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/immunology , Humans , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Severity of Illness Index
5.
Thorax ; 76(12): 1246-1249, 2021 12.
Article in English | MEDLINE | ID: covidwho-1322847

ABSTRACT

The burden of nosocomial SARS-CoV-2 infection remains poorly defined. We report on the outcomes of 2508 adults with molecularly-confirmed SARS-CoV-2 admitted across 18 major hospitals, representing over 60% of those hospitalised across Wales between 1 March and 1 July 2020. Inpatient mortality for nosocomial infection ranged from 38% to 42%, consistently higher than participants with community-acquired infection (31%-35%) across a range of case definitions. Those with hospital-acquired infection were older and frailer than those infected within the community. Nosocomial diagnosis occurred a median of 30 days following admission (IQR 21-63), suggesting a window for prophylactic or postexposure interventions, alongside enhanced infection control measures.


Subject(s)
COVID-19 , Cross Infection , Adult , Cross Infection/epidemiology , Hospitals , Humans , Retrospective Studies , SARS-CoV-2 , Wales/epidemiology
6.
J Clin Pathol ; 75(4): 255-262, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1090886

ABSTRACT

BACKGROUND: The role of specific blood tests to predict poor prognosis in patients admitted with infection from SARS-CoV-2 remains uncertain. During the first wave of the global pandemic, an extended laboratory testing panel was integrated into the local pathway to guide triage and healthcare resource utilisation for emergency admissions. We conducted a retrospective service evaluation to determine the utility of extended tests (D-dimer, ferritin, high-sensitivity troponin I, lactate dehydrogenase and procalcitonin) compared with the core panel (full blood count, urea and electrolytes, liver function tests and C reactive protein). METHODS: Clinical outcomes for adult patients with laboratory-confirmed COVID-19 admitted between 17 March and 30 June 2020 were extracted, alongside costs estimates for individual tests. Prognostic performance was assessed using multivariable logistic regression analysis with 28-day mortality used as the primary endpoint and a composite of 28-day intensive care escalation or mortality for secondary analysis. RESULTS: From 13 500 emergency attendances, we identified 391 unique adults admitted with COVID-19. Of these, 113 died (29%) and 151 (39%) reached the composite endpoint. 'Core' test variables adjusted for age, gender and index of deprivation had a prognostic area under the curve of 0.79 (95% CI 0.67 to 0.91) for mortality and 0.70 (95% CI 0.56 to 0.84) for the composite endpoint. Addition of 'extended' test components did not improve on this. CONCLUSION: Our findings suggest use of the extended laboratory testing panel to risk stratify community-acquired COVID-19 positive patients on admission adds limited prognostic value. We suggest laboratory requesting should be targeted to patients with specific clinical indications.


Subject(s)
COVID-19 , Adult , COVID-19/diagnosis , Emergency Service, Hospital , Humans , Retrospective Studies , Risk Assessment , SARS-CoV-2
7.
Mucosal Immunol ; 14(1): 14-25, 2021 01.
Article in English | MEDLINE | ID: covidwho-922255

ABSTRACT

Infection with respiratory viruses such as influenza, respiratory syncytial virus and coronavirus provides a difficult immunological challenge for the host, where a balance must be established between controlling viral replication and limiting damage to the delicate lung structure. Although the genetic architecture of host responses to respiratory viral infections is not yet understood, it is clear there is underlying heritability that influences pathogenesis. Immune control of virus replication is essential in respiratory infections, but overt activation can enhance inflammation and disease severity. Cytokines initiate antiviral immune responses but are implicated in viral pathogenesis. Here, we discuss how host genetic variation may influence cytokine responses to respiratory viral infections and, based on our current understanding of the role that cytokines play in viral pathogenesis, how this may influence disease severity. We also discuss how induced pluripotent stem cells may be utilised to probe the mechanistic implications of allelic variation in genes in virus-induced inflammatory responses. Ultimately, this could help to design better immune modulators, stratify high risk patients and tailor anti-inflammatory treatments, potentially expanding the ability to treat respiratory virus outbreaks in the future.


Subject(s)
Cytokines/genetics , Inflammation/genetics , Influenza A virus/immunology , Respiratory Syncytial Viruses/immunology , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/pathology , Cytokines/blood , Genetic Variation/genetics , Genetic Variation/immunology , Humans , Induced Pluripotent Stem Cells , Inflammation/pathology , Influenza, Human/immunology , Lung/pathology , Lung/virology , Respiratory Syncytial Virus Infections/immunology
SELECTION OF CITATIONS
SEARCH DETAIL