Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
PLoS One ; 17(6): e0269127, 2022.
Article in English | MEDLINE | ID: covidwho-1879314

ABSTRACT

Longitudinal clinical studies traditionally require in-person study visits which are well documented to pose barriers to participation and contribute challenges to enrolling representative samples. Remote trial models may reduce barriers to research engagement, improve retention, and reach a more representative cohort. As remote trials become more common following the COVID-19 pandemic, a critical evaluation of this approach is imperative to optimize this paradigm shift in research. The TestBoston study was launched to understand prevalence and risk factors for COVID-19 infection in the greater Boston area through a fully remote home-testing model. Participants (adults, within 45 miles of Boston, MA) were recruited remotely from patient registries at Brigham and Women's Hospital and the general public. Participants were provided with monthly and "on-demand" at-home SARS-CoV-2 RT-PCR and antibody testing using nasal swab and dried blood spot self-collection kits and electronic surveys to assess symptoms and risk factors for COVID-19 via an online dashboard. Between October 2020 and January 2021, we enrolled 10,289 participants reflective of Massachusetts census data. Mean age was 47 years (range 18-93), 5855 (56.9%) were assigned female sex at birth, 7181(69.8%) reported being White non-Hispanic, 952 (9.3%) Hispanic/Latinx, 925 (9.0%) Black, 889 (8.6%) Asian, and 342 (3.3%) other and/or more than one race. Lower initial enrollment among Black and Hispanic/Latinx individuals required an adaptive approach to recruitment, leveraging connections to the medical system, coupled with community partnerships to ensure a representative cohort. Longitudinal retention was higher among participants who were White non-Hispanic, older, working remotely, and with lower socioeconomic vulnerability. Implementation highlighted key differences in remote trial models as participants independently navigate study milestones, requiring a dedicated participant support team and robust technology platforms, to reduce barriers to enrollment, promote retention, and ensure scientific rigor and data quality. Remote clinical trial models offer tremendous potential to engage representative cohorts, scale biomedical research, and promote accessibility by reducing barriers common in traditional trial design. Barriers and burdens within remote trials may be experienced disproportionately across demographic groups. To maximize engagement and retention, researchers should prioritize intensive participant support, investment in technologic infrastructure and an adaptive approach to maximize engagement and retention.


Subject(s)
COVID-19 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Clinical Trials as Topic , Cohort Studies , Feasibility Studies , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2 , Young Adult
2.
Am J Hematol ; 97(6): 770-779, 2022 06 01.
Article in English | MEDLINE | ID: covidwho-1750295

ABSTRACT

The efficacy of COVID-19 convalescent plasma (CCP) as a treatment for hospitalized patients with COVID-19 remains somewhat controversial; however, many studies have not evaluated CCP documented to have high neutralizing antibody titer by a highly accurate assay. To evaluate the correlation of the administration of CCP with titer determined by a live viral neutralization assay with 7- and 28-day death rates during hospitalization, a total of 23 118 patients receiving a single unit of CCP were stratified into two groups: those receiving high titer CCP (>250 50% inhibitory dilution, ID50; n = 13 636) or low titer CCP (≤250 ID50; n = 9482). Multivariable Cox regression was performed to assess risk factors. Non-intubated patients who were transfused with high titer CCP showed 1.1% and 1.7% absolute reductions in overall 7- and 28-day death rates, respectively, compared to those non-intubated patients receiving low titer CCP. No benefit of CCP was observed in intubated patients. The relative benefit of high titer CCP was confirmed in multivariable Cox regression. Administration of CCP with high titer antibody content determined by live viral neutralization assay to non-intubated patients is associated with modest clinical efficacy. Although shown to be only of modest clinical benefit, CCP may play a role in the future should viral variants develop that are not neutralized by other available therapeutics.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , Treatment Outcome
3.
Nat Med ; 28(5): 1083-1094, 2022 05.
Article in English | MEDLINE | ID: covidwho-1671607

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has demonstrated a clear need for high-throughput, multiplexed and sensitive assays for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses and their emerging variants. Here, we present a cost-effective virus and variant detection platform, called microfluidic Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (mCARMEN), which combines CRISPR-based diagnostics and microfluidics with a streamlined workflow for clinical use. We developed the mCARMEN respiratory virus panel to test for up to 21 viruses, including SARS-CoV-2, other coronaviruses and both influenza strains, and demonstrated its diagnostic-grade performance on 525 patient specimens in an academic setting and 166 specimens in a clinical setting. We further developed an mCARMEN panel to enable the identification of 6 SARS-CoV-2 variant lineages, including Delta and Omicron, and evaluated it on 2,088 patient specimens with near-perfect concordance to sequencing-based variant classification. Lastly, we implemented a combined Cas13 and Cas12 approach that enables quantitative measurement of SARS-CoV-2 and influenza A viral copies in samples. The mCARMEN platform enables high-throughput surveillance of multiple viruses and variants simultaneously, enabling rapid detection of SARS-CoV-2 variants.


Subject(s)
COVID-19 , Influenza, Human , COVID-19/diagnosis , Humans , Microfluidics , SARS-CoV-2/genetics
5.
Sci Transl Med ; 13(598)2021 06 16.
Article in English | MEDLINE | ID: covidwho-1314110

ABSTRACT

Bacterial sepsis and severe COVID-19 share similar clinical manifestations and are both associated with dysregulation of the myeloid cell compartment. We previously reported an expanded CD14+ monocyte state, MS1, in patients with bacterial sepsis and validated expansion of this cell subpopulation in publicly available transcriptomics data. Here, using published datasets, we show that the gene expression program associated with MS1 correlated with sepsis severity and was up-regulated in monocytes from patients with severe COVID-19. To examine the ontogeny and function of MS1 cells, we developed a cellular model for inducing CD14+ MS1 monocytes from healthy bone marrow hematopoietic stem and progenitor cells (HSPCs). We found that plasma from patients with bacterial sepsis or COVID-19 induced myelopoiesis in HSPCs in vitro and expression of the MS1 gene program in monocytes and neutrophils that differentiated from these HSPCs. Furthermore, we found that plasma concentrations of IL-6, and to a lesser extent IL-10, correlated with increased myeloid cell output from HSPCs in vitro and enhanced expression of the MS1 gene program. We validated the requirement for these two cytokines to induce the MS1 gene program through CRISPR-Cas9 editing of their receptors in HSPCs. Using this cellular model system, we demonstrated that induced MS1 cells were broadly immunosuppressive and showed decreased responsiveness to stimulation with a synthetic RNA analog. Our in vitro study suggests a potential role for systemic cytokines in inducing myelopoiesis during severe bacterial or SARS-CoV-2 infection.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Sepsis , Humans , Myeloid Cells , SARS-CoV-2
6.
J Infect Dis ; 2021 Jul 13.
Article in English | MEDLINE | ID: covidwho-1307536

ABSTRACT

Transmission of COVID-19 from people without symptoms confounds societal mitigation strategies. From April to June 2020, we tested nasopharyngeal swabs by RT-qPCR from 15,514 staff and 16,966 residents of nursing homes and assisted living facilities in Massachusetts. Cycle threshold (Ct) distributions were very similar between populations with (N = 739) and without (N = 2179) symptoms at the time of sampling (mean Ct 25.7 versus 26.4, ranges 12-38). However, as local cases waned, those without symptoms shifted towards higher Ct. With such similar viral load distributions, existing testing modalities should perform comparably regardless of symptoms, contingent upon time since infection.

7.
Transfusion ; 61(9): 2677-2687, 2021 09.
Article in English | MEDLINE | ID: covidwho-1268131

ABSTRACT

BACKGROUND: Antibody response duration following severe acute respiratory syndrome coronavirus 2 infection tends to be variable and depends on severity of disease and method of detection. STUDY DESIGN AND METHODS: COVID-19 convalescent plasma from 18 donors was collected longitudinally for a maximum of 63-129 days following resolution of symptoms. All the samples were initially screened by the Ortho total Ig test to confirm positivity and subsequently tested with seven additional direct sandwich or indirect binding assays (Ortho, Roche, Abbott, Broad Institute) directed against a variety of antigen targets (S1, receptor binding domain, and nucleocapsid [NC]), along with two neutralization assays (Broad Institute live virus PRNT and Vitalant Research Institute [VRI] Pseudovirus reporter viral particle neutralization [RVPN]). RESULTS: The direct detection assays (Ortho total Ig total and Roche total Ig) showed increasing levels of antibodies over the time period, in contrast to the indirect IgG assays that showed a decline. Neutralization assays also demonstrated declining responses; the VRI RVPN pseudovirus had a greater rate of decline than the Broad PRNT live virus assay. DISCUSSION: These data show that in addition to variable individual responses and associations with disease severity, the detection assay chosen contributes to the heterogeneous results in antibody stability over time. Depending on the scope of the research, one assay may be preferable over another. For serosurveillance studies, direct, double Ag-sandwich assays appear to be the best choice due to their stability; in particular, algorithms that include both S1- and NC-based assays can help reduce the rate of false-positivity and discriminate between natural infection and vaccine-derived seroreactivity.


Subject(s)
Antibodies, Viral/immunology , Blood Donors , COVID-19/epidemiology , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/blood , COVID-19/diagnosis , Host-Pathogen Interactions/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Seroepidemiologic Studies , Serologic Tests/methods , Serologic Tests/standards , Severity of Illness Index
8.
Sci Transl Med ; 13(598)2021 06 16.
Article in English | MEDLINE | ID: covidwho-1262379

ABSTRACT

Bacterial sepsis and severe COVID-19 share similar clinical manifestations and are both associated with dysregulation of the myeloid cell compartment. We previously reported an expanded CD14+ monocyte state, MS1, in patients with bacterial sepsis and validated expansion of this cell subpopulation in publicly available transcriptomics data. Here, using published datasets, we show that the gene expression program associated with MS1 correlated with sepsis severity and was up-regulated in monocytes from patients with severe COVID-19. To examine the ontogeny and function of MS1 cells, we developed a cellular model for inducing CD14+ MS1 monocytes from healthy bone marrow hematopoietic stem and progenitor cells (HSPCs). We found that plasma from patients with bacterial sepsis or COVID-19 induced myelopoiesis in HSPCs in vitro and expression of the MS1 gene program in monocytes and neutrophils that differentiated from these HSPCs. Furthermore, we found that plasma concentrations of IL-6, and to a lesser extent IL-10, correlated with increased myeloid cell output from HSPCs in vitro and enhanced expression of the MS1 gene program. We validated the requirement for these two cytokines to induce the MS1 gene program through CRISPR-Cas9 editing of their receptors in HSPCs. Using this cellular model system, we demonstrated that induced MS1 cells were broadly immunosuppressive and showed decreased responsiveness to stimulation with a synthetic RNA analog. Our in vitro study suggests a potential role for systemic cytokines in inducing myelopoiesis during severe bacterial or SARS-CoV-2 infection.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Sepsis , Humans , Myeloid Cells , SARS-CoV-2
9.
Nat Commun ; 12(1): 1676, 2021 03 15.
Article in English | MEDLINE | ID: covidwho-1135664

ABSTRACT

The recently identified Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. How this novel beta-coronavirus virus, and coronaviruses more generally, alter cellular metabolism to support massive production of ~30 kB viral genomes and subgenomic viral RNAs remains largely unknown. To gain insights, transcriptional and metabolomic analyses are performed 8 hours after SARS-CoV-2 infection, an early timepoint where the viral lifecycle is completed but prior to overt effects on host cell growth or survival. Here, we show that SARS-CoV-2 remodels host folate and one-carbon metabolism at the post-transcriptional level to support de novo purine synthesis, bypassing viral shutoff of host translation. Intracellular glucose and folate are depleted in SARS-CoV-2-infected cells, and viral replication is exquisitely sensitive to inhibitors of folate and one-carbon metabolism, notably methotrexate. Host metabolism targeted therapy could add to the armamentarium against future coronavirus outbreaks.


Subject(s)
COVID-19/metabolism , Carbon/metabolism , Folic Acid/metabolism , SARS-CoV-2/physiology , Virus Replication , A549 Cells , Animals , COVID-19/virology , Chlorocebus aethiops , Cytopathogenic Effect, Viral , Folic Acid Antagonists/pharmacology , Glucose/metabolism , Humans , Methotrexate/pharmacology , RNA, Viral/biosynthesis , SARS-CoV-2/drug effects , Serine/metabolism , Transcription, Genetic , Vero Cells , Viral Proteins/genetics , Virus Replication/drug effects
10.
Nature ; 582(7811): 277-282, 2020 06.
Article in English | MEDLINE | ID: covidwho-980299

ABSTRACT

The great majority of globally circulating pathogens go undetected, undermining patient care and hindering outbreak preparedness and response. To enable routine surveillance and comprehensive diagnostic applications, there is a need for detection technologies that can scale to test many samples1-3 while simultaneously testing for many pathogens4-6. Here, we develop Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (CARMEN), a platform for scalable, multiplexed pathogen detection. In the CARMEN platform, nanolitre droplets containing CRISPR-based nucleic acid detection reagents7 self-organize in a microwell array8 to pair with droplets of amplified samples, testing each sample against each CRISPR RNA (crRNA) in replicate. The combination of CARMEN and Cas13 detection (CARMEN-Cas13) enables robust testing of more than 4,500 crRNA-target pairs on a single array. Using CARMEN-Cas13, we developed a multiplexed assay that simultaneously differentiates all 169 human-associated viruses with at least 10 published genome sequences and rapidly incorporated an additional crRNA to detect the causative agent of the 2020 COVID-19 pandemic. CARMEN-Cas13 further enables comprehensive subtyping of influenza A strains and multiplexed identification of dozens of HIV drug-resistance mutations. The intrinsic multiplexing and throughput capabilities of CARMEN make it practical to scale, as miniaturization decreases reagent cost per test by more than 300-fold. Scalable, highly multiplexed CRISPR-based nucleic acid detection shifts diagnostic and surveillance efforts from targeted testing of high-priority samples to comprehensive testing of large sample sets, greatly benefiting patients and public health9-11.


Subject(s)
CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics , Microfluidic Analytical Techniques/methods , Virus Diseases/diagnosis , Virus Diseases/virology , Animals , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Drug Resistance, Viral/genetics , Genome, Viral/genetics , HIV/classification , HIV/genetics , HIV/isolation & purification , Humans , Influenza A virus/classification , Influenza A virus/genetics , Influenza A virus/isolation & purification , Microfluidic Analytical Techniques/instrumentation , RNA, Guide/genetics , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL