ABSTRACT
BACKGROUND: Dysnatraemias are commonly reported in COVID-19. However, the clinical epidemiology of hypernatraemia and its impact on clinical outcomes in relation to different variants of SARS-CoV-2, especially the prevailing Omicron variant, remain unclear. METHODS: This was a territory-wide retrospective study to investigate the clinical epidemiology and outcomes of COVID-19 patients with hypernatraemia at presentation during the period from 1 January 2020 to 31 March 2022. The primary outcome was 30-day mortality. Key secondary outcomes included rates of hospitalization and ICU admission, and costs of hospitalization. RESULTS: In this study, 53,415 adult COVID-19 patients were included for analysis. Hypernatraemia was observed in 2688 (5.0%) patients at presentation, of which most cases (99.2%) occurred during the local "5th wave" dominated by the Omicron BA.2 variant. Risk factors for hypernatraemia at presentation included age, institutionalization, congestive heart failure, dementia, higher SARS-CoV-2 Ct value, white cell count, C-reactive protein and lower eGFR and albumin levels (p < 0.001 for all). Patients with hypernatraemia showed significantly higher 30-day mortality (32.0% vs. 5.7%, p < 0.001) and longer lengths of stay (12.9 ± 10.9 vs. 11.5 ± 12.1 days, p < 0.001) compared with those with normonatraemia. Multivariate analysis revealed hypernatraemia at presentation as an independent predictor for 30-day mortality (aHR 1.32, 95% CI 1.14-1.53, p < 0.001) and prolonged hospital stays (OR 1.55, 95% CI 1.17-2.05, p = 0.002). CONCLUSIONS: Hypernatraemia is common among COVID-19 patients, especially among institutionalized older adults with cognitive impairment and other comorbidities during large-scale outbreaks during the Omicron era. Hypernatraemia is associated with unfavourable outcomes and increased healthcare utilization.
ABSTRACT
Background: Hyponatremia is common in COVID-19, but its epidemiology and impact on clinical outcomes in relation to different variants, especially the Omicron variant, requires further clarification. Methods: This was a territory-wide retrospective study to investigate the epidemiology and outcomes of COVID-19 patients with hyponatremia from January 1, 2020 to March 31, 2022 in Hong Kong. The primary outcome was 30-day mortality of patients with COVID-19 and hyponatremia at presentation. Secondary outcomes included rate of hospitalization, intensive care unit (ICU) hospitalization, overall duration of hospitalization, and duration of ICU hospitalization. Results: A total of 53,415 COVID-19 patients were included for analysis, of which 14,545 (27.2%) had hyponatremia at presentation. 9813 (67.5%), 2821 (19.4%), and 1911 (13.1%) had mild (130 to <135 mmol/L), moderate (125 to <130 mmol/L), and severe hyponatremia (<125 mmol/L) at presentation respectively. Age, male sex, diabetes, active malignancy, white cell count, serum creatinine, hypoalbuminemia, C-reactive protein, and viral loads were independent predictors for hyponatremia in COVID-19 patients (P < 0.001, for all). Hyponatremic patients had increased 30-day mortality (9.7 vs. 5.7%, P < 0.001), prolonged hospitalization (11.9 ± 15.1 days vs. 11.5 ± 12.1 days, P < 0.001), and more ICU admissions (7.0% vs. 3.3%, P < 0.001). Patients diagnosed during the "fifth wave" Omicron BA.2 outbreak had 2.29-fold risk (95% CI 2.02-2.59, P < 0.001) of presenting with hyponatremia compared to other waves. Conclusion: Hyponatremia is common among COVID-19 patients, and may serve as a prognostic indicator for unfavorable outcomes and increased healthcare utilization in the evolving COVID-19 outbreak.
ABSTRACT
BACKGROUND: Observable symptoms of Bell's palsy following vaccinations may arouse concern over the safety profiles of novel COVID-19 vaccines in the general public. However, there are only a few studies on Bell's palsy following mRNA COVID-19 vaccination with inconclusive findings. This study aimed to update the previous analysis on the risk of Bell's palsy following mRNA (BNT162b2) COVID-19 vaccination. METHODS: This study included cases aged ≥16-years-old with a new diagnosis of Bell's palsy within 28 days after BNT162b2 vaccinations from the population-based electronic health records in Hong Kong, using a nested case-control and self-controlled case series (SCCS) analyses were employed. The association between Bell's palsy and BNT162b2 was evaluated using conditional logistic and Poisson regression in nested case-control and SCCS analysis, respectively. RESULTS: A total of 54 individuals were newly diagnosed with Bell's palsy after BNT162b2 vaccinations. The incidence of Bell's palsy was 1.58 (95% CI:1.19-2.07) per 100,000 doses administered. The nested case-control analysis showed significant association between BNT162b2 vaccinations and Bell's palsy (Adjusted OR: 1.543, 95%CI:1.123 - 2.121), with up to 1.112 excess events per 100,000 people receiving two doses of BNT162b2. An increased risk of Bell's palsy was observed during the first 14 days after the second dose of BNT162b2 in both nested case-control (Adjusted OR: 2.325, 95%CI:1.414 - 3.821) and SCCS analysis (Adjusted IRR=2.44, 95%CI:1.32-4.50). CONCLUSION: There is an overall increased risk of Bell's palsy following BNT162b2 vaccination, particularly within the first 14 days after the second dose, but the absolute risk was very low.
ABSTRACT
BACKGROUND: Early antiviral therapy was effective in the treatment of COVID-19. We assessed the efficacy and safety of combined interferon beta-1b and remdesivir treatment in hospitalized COVID-19 patients. METHODS: We conducted a multicentre, prospective open-label, randomized-controlled trial involving high-risk adults hospitalized for COVID-19. Patients were randomly assigned to a 5-day interferon beta-1b 16 million units daily and remdesivir 200mg loading on day 1 followed by 100mg daily on day 2 to 5 (combination-group), or to remdesivir only of similar regimen (control-group) (1:1). The primary end-point was the time to complete alleviation of symptoms (NEWS2 = 0). RESULTS: Two-hundred and twelve patients were enrolled. The median days of starting treatment from symptom-onset was 3 days. The median age was 65 years and 159 patients (75%) had chronic disease. The baseline demographics were similar. There was no mortality. For the primary-endpoint, the combination-group was significantly quicker to NEWS2 = 0 (4 versus 6.5 days; hazard-ratio [HR],6.59; 95% confidence-interval [CI],6.1-7.09; p < 0.0001) when compared to the control-group. For the secondary endpoints, the combination-group was quicker to negative NPS VL (6 versus 8 days; HR,8.16; 95% CI,7.79-8.52; p < 0.0001) and develop seropositive IgG (8 versus 10 days; HR,10.78; 95% CI,9.98-11.58; p < 0.0001). All adverse events resolved upon follow-up. Combination group (HR,4.1 95%CI,1.9-8.6, p < 0.0001), was the most significant independent factor associated with NEWS2 = 0 on day 4. CONCLUSIONS: Early treatment with interferon beta-1b and remdesivir was safe and better than remdesivir only in alleviating symptoms, shorten viral shedding and hospitalization with earlier seropositivity in high-risk COVID-19 patients.
ABSTRACT
PURPOSE: We evaluated the evolution of thyroid function and autoimmunity among COVID-19 survivors over 6 months in relation to interferon beta-1b treatment and long COVID. METHODS: We included COVID-19 survivors managed in a major COVID-19 centre between July 2020 and May 2021 who were reassessed three and/or six months after acute COVID-19. Thyroid function tests (TFTs) and anti-thyroid antibody titres were measured at acute COVID-19, 3-month and 6-month. RESULTS: 250 COVID-19 survivors were included (mean age 52.7 years, 50.4% men). Persistent thyroid function abnormalities were more likely in those with abnormal TFTs in acute COVID-19 (P < 0.001). Among 51 patients with abnormal TFTs in acute COVID-19, 82.4% resolved upon follow-up. Of 199 patients with normal TFTs in acute COVID-19, only 4.5% had incident abnormal TFTs, more likely in interferon-treated patients (P = 0.044) and none clinically overt. Among 129 patients with complete 6-month follow-up for anti-thyroid antibody titres, there was no significant change overall, except for modest increase in anti-thyroid antibody titres among the 84 interferon-treated patients (P < 0.05 at both 3 months and 6 months). Long COVID occurred in 19.5% and 10.4% at 3 and 6 months respectively, where TFTs and anti-thyroid antibody titres were not predictive of its occurrence. CONCLUSION: Over 6 months, most abnormal TFTs in acute COVID-19 resolved, with no significant incident thyroid dysfunction. SARS-CoV-2 infection did not lead to change in thyroid autoimmunity, while interferon treatment was associated with modest increase in anti-thyroid antibody titres. Thyroid function and anti-thyroid antibodies did not play a significant role in long COVID.
ABSTRACT
Evidence on the effectiveness of COVID-19 vaccines among people who recovered from a previous SARS-CoV-2 infection is warranted to inform vaccination recommendations. Using the territory-wide public healthcare and vaccination records of over 2.5 million individuals in Hong Kong, we examined the potentially differential risk of SARS-CoV-2 infection, hospitalization, and mortality between those receiving two homologous doses of BNT162b2 or CoronaVac versus those with a previous infection receiving only one dose amid the Omicron epidemic. Results show a single dose after a SARS-CoV-2 infection is associated with a lower risk of infection (BNT162b2: adjusted incidence rate ratio [IRR] = 0.475, 95% CI: 0.410-0.550; CoronaVac: adjusted IRR = 0.397, 95% CI: 0.309-0.511) and no significant difference was detected in the risk of COVID-19-related hospitalization or mortality compared with a two-dose vaccination regimen. Findings support clinical recommendations that those with a previous infection could receive a single dose to gain at least similar protection as those who received two doses without a previous infection.
ABSTRACT
Acquiring protective immunity through vaccination is essential, especially for patients with type 2 diabetes who are vulnerable for adverse clinical outcomes during coronavirus disease 2019 (COVID-19) infection. Type 2 diabetes (T2D) is associated with immune dysfunction. Here, we evaluated the impact of T2D on the immunological responses induced by mRNA (BNT162b2) and inactivated (CoronaVac) vaccines, the two most commonly used COVID-19 vaccines. The study consisted of two parts. In Part 1, the sera titres of IgG antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) alpha receptor binding domain (RBD), their neutralizing capacity, and antigen-specific CD4+T and CD8+T cell responses at 3-6 months after vaccination were compared between BNT162b2 (n=60) and CoronaVac (n=50) vaccinees with or without T2D. Part 2 was a time-course study investigating the initial B and T cell responses induced by BNT162b2 among vaccinees (n=16) with or without T2D. Our data showed that T2D impaired both cellular and humoral immune responses induced by CoronaVac. For BNT162b2, T2D patients displayed a reduction in CD4+T-helper 1 (Th1) differentiation following their first dose. However, this initial defect was rectified by the second dose of BNT162b2, resulting in comparable levels of memory CD4+ and CD8+T cells, anti-RBD IgG, and neutralizing antibodies with healthy individuals at 3-6 months after vaccination. Hence, T2D influences the effectiveness of COVID-19 vaccines depending on their platform. Our findings provide a potential mechanism for the susceptibility of developing adverse outcomes observed in COVID-19 patients with T2D and received either CoronaVac or just one dose of BNT162b2.
Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Viral Vaccines , Humans , COVID-19 Vaccines , RNA, Messenger , COVID-19/prevention & control , BNT162 Vaccine , RNA, Viral , SARS-CoV-2 , Immunity, Cellular , Immunoglobulin GABSTRACT
We obtained 24 air samples in 8 general wards temporarily converted into negative-pressure wards admitting coronavirus disease 2019 (COVID-19) patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant BA.2.2 in Hong Kong. SARS-CoV-2 RNA was detected in 19 (79.2%) of 24 samples despite enhanced indoor air dilution. It is difficult to prevent airborne transmission of SARS-CoV-2 in hospitals.
ABSTRACT
OBJECTIVE: The risk of seizure following BNT162b2 and CoronaVac vaccinations has been sparsely investigated. This study aimed to evaluate this association. METHOD: Patients who had their first seizure-related hospitalization between February 23, 2021 and January 31, 2022, were identified in Hong Kong. All seizure episodes happening on the day of vaccination (day 0) were excluded, since clinicians validated that most of the cases on day 0 were syncopal episodes. Within-individual comparison using a modified self-controlled case series analysis was applied to estimate the incidence rate ratio (IRR) with 95% confidence intervals (CIs) of seizure using conditional Poisson regression. RESULTS: We identified 1656 individuals who had their first seizure-related hospitalization (BNT162b2: 426; CoronaVac: 263; unvaccinated: 967) within the observation period. The incidence of seizure was 1.04 (95% CI .80-1.33) and 1.11 (95% CI .80-1.50) per 100 000 doses of BNT162b2 and CoronaVac administered, respectively. Sixteen and 17 individuals, respectively, received a second dose after having a first seizure within 28 days after the first dose of BNT162b2 and CoronaVac vaccinations. None had recurrent seizures after the second dose. There was no increased risk during day 1-6 after the first (BNT162b2: IRR = 1.39, 95% CI = .75-2.58; CoronaVac: IRR = 1.19, 95% CI = .50-2.83) and second doses (BNT162b2: IRR = 1.36, 95% CI = .72-2.57; CoronaVac: IRR = .71, 95% CI = .22-2.30) of vaccinations. During 7-13, 14-20, and 21-27 days post-vaccination, no association was observed for either vaccine. SIGNIFICANCE: The findings demonstrated no increased risk of seizure following BNT162b2 and CoronaVac vaccinations. Future studies will be warranted to evaluate the risk of seizure following COVID-19 vaccinations in different populations, with subsequent doses to ensure the generalizability.
ABSTRACT
INTRODUCTION: In Hong Kong, CoronaVac and BNT162b2 have been approved for emergency use owing to the coronavirus disease 2019 (COVID-19) pandemic. Reactions towards the vaccine and the risk of post-vaccination adverse events may be different between recipients with and without type 2 diabetes mellitus (T2DM). OBJECTIVE: The aim of this study was to evaluate the risk of adverse events of special interest (AESI) and acute diabetic complications in the T2DM population after COVID-19 vaccination in Hong Kong. RESEARCH DESIGN AND METHODS: Self-controlled case-series analysis was conducted. Patients with T2DM who received at least one dose of BNT162b2 or CoronaVac between 23 February 2021 and 31 January 2022 from electronic health records in Hong Kong were included. The incidence rates of 29 AESIs and acute diabetic complications (any of severe hypoglycemia, diabetic ketoacidosis or hyperosmolar hyperglycemic syndrome) requiring hospitalization within 21 days after the first or second dose of vaccination were reported. The risks of these outcomes were evaluated using conditional Poisson regression. RESULTS: Among 141,224 BNT162b2 recipients and 209,739 CoronaVac recipients with T2DM, the incidence per 100,000 doses and incidence per 100,000 person-years of individual AESIs and acute diabetic complications ranged from 0 to 24.4 and 0 to 438.6 in BNT162b2 group, and 0 to 19.5 and 0 to 351.6 in CoronaVac group. We did not observe any significantly increased risk of individual AESIs or acute diabetic complications after first or second doses of BNT162b2 or CoronaVac vaccine. Subgroup analysis based on HbA1c < 7% and ≥ 7% also did not show significantly excess risk after vaccination. CONCLUSIONS: Patients with T2DM do not appear to have higher risks of AESI and acute diabetic complications after BNT162b2 or CoronaVac vaccination. Moreover, given the low incidence of AESIs and acute diabetic complications after vaccination, the absolute risk increment was likely minimal.
Subject(s)
COVID-19 Vaccines , COVID-19 , Diabetes Complications , Diabetes Mellitus, Type 2 , Humans , BNT162 Vaccine , COVID-19/complications , COVID-19/epidemiology , COVID-19 Vaccines/adverse effects , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , RNA, Messenger , Vaccination/adverse effectsABSTRACT
BACKGROUND: Patients with COVID-19 display a broad spectrum of manifestations from asymptomatic to life-threatening disease with dysregulated immune responses. Mechanisms underlying the detrimental immune responses and disease severity remain elusive. METHODS: We investigated a total of 137 APs infected with SARS-CoV-2. Patients were divided into mild and severe patient groups based on their requirement of oxygen supplementation. All blood samples from APs were collected within three weeks after symptom onset. Freshly isolated PBMCs were investigated for B cell subsets, their homing potential, activation state, mitochondrial functionality and proliferative response. Plasma samples were tested for cytokine concentration, and titer of Nabs, RBD-, S1-, SSA/Ro- and dsDNA-specific IgG. RESULTS: While critically ill patients displayed predominantly extrafollicular B cell activation with elevated inflammation, mild patients counteracted the disease through the timely induction of mitochondrial dysfunction in B cells within the first week post symptom onset. Rapidly increased mitochondrial dysfunction, which was caused by infection-induced excessive intracellular calcium accumulation, suppressed excessive extrafollicular responses, leading to increased neutralizing potency index and decreased inflammatory cytokine production. Patients who received prior COVID-19 vaccines before infection displayed significantly decreased extrafollicular B cell responses and mild disease. CONCLUSION: Our results reveal an immune mechanism that controls SARS-CoV-2-induced detrimental B cell responses and COVID-19 severity, which may have implications for viral pathogenesis, therapeutic interventions and vaccine development.
Subject(s)
COVID-19 , Viral Vaccines , B-Lymphocytes , COVID-19 Vaccines , Cytokines , Humans , Mitochondria , SARS-CoV-2 , Severity of Illness Index , Viral Vaccines/pharmacologyABSTRACT
BACKGROUND: Early antiviral therapy was effective in the treatment of COVID-19. We assessed the efficacy and safety of combined interferon beta-1b and remdesivir treatment in hospitalized COVID-19 patients. METHODS: We conducted a multicentre, prospective open-label, randomized-controlled trial involving high-risk adults hospitalized for COVID-19. Patients were randomly assigned to a 5-day interferon beta-1b 16 million units daily and remdesivir 200mg loading on day 1 followed by 100mg daily on day 2 to 5 (combination-group), or to remdesivir only of similar regimen (control-group) (1:1). The primary end-point was the time to complete alleviation of symptoms (NEWS2 = 0). RESULTS: Two-hundred and twelve patients were enrolled. The median days of starting treatment from symptom-onset was 3 days. The median age was 65 years and 159 patients (75%) had chronic disease. The baseline demographics were similar. There was no mortality. For the primary-endpoint, the combination-group was significantly quicker to NEWS2 = 0 (4 versus 6.5 days; hazard-ratio [HR],6.59; 95% confidence-interval [CI],6.1-7.09; p < 0.0001) when compared to the control-group. For the secondary endpoints, the combination-group was quicker to negative NPS VL (6 versus 8 days; HR,8.16; 95% CI,7.79-8.52; p < 0.0001) and develop seropositive IgG (8 versus 10 days; HR,10.78; 95% CI,9.98-11.58; p < 0.0001). All adverse events resolved upon follow-up. Combination group (HR,4.1 95%CI,1.9-8.6, p < 0.0001), was the most significant independent factor associated with NEWS2 = 0 on day 4. CONCLUSIONS: Early treatment with interferon beta-1b and remdesivir was safe and better than remdesivir only in alleviating symptoms, shorten viral shedding and hospitalization with earlier seropositivity in high-risk COVID-19 patients.
ABSTRACT
SARS-CoV-2 has been confirmed in over 450 million confirmed cases since 2019. Although several vaccines have been certified by the WHO and people are being vaccinated on a global scale, it has been reported that multiple SARS-CoV-2 variants can escape neutralization by antibodies, resulting in vaccine breakthrough infections. Bacillus Calmette-Guérin (BCG) is known to induce heterologous protection based on trained immune responses. Here, we investigated whether BCG-induced trained immunity protected against SARS-CoV-2 in the K18-hACE2 mouse model. Our data demonstrate that i.v. BCG (BCG-i.v.) vaccination induces robust trained innate immune responses and provides protection against WT SARS-CoV-2, as well as the B.1.617.1 and B.1.617.2 variants. Further studies suggest that myeloid cell differentiation and activation of the glycolysis pathway are associated with BCG-induced training immunity in K18-hACE2 mice. Overall, our study provides the experimental evidence that establishes a causal relationship between BCG-i.v. vaccination and protection against SARS-CoV-2 challenge.
Subject(s)
COVID-19 , SARS-CoV-2 , Animals , BCG Vaccine , COVID-19/prevention & control , Humans , Melphalan , Mice , gamma-GlobulinsABSTRACT
BACKGROUND: Observable symptoms of Bell's palsy following vaccinations may arouse concern over the safety profiles of novel COVID-19 vaccines in the general public. However, there are only a few studies on Bell's palsy following mRNA COVID-19 vaccination with inconclusive findings. This study aimed to update the previous analysis on the risk of Bell's palsy following mRNA (BNT162b2) COVID-19 vaccination. METHODS: This study included cases aged ≥16-years-old with a new diagnosis of Bell's palsy within 28 days after BNT162b2 vaccinations from the population-based electronic health records in Hong Kong, using a nested case-control and self-controlled case series (SCCS) analyses were employed. The association between Bell's palsy and BNT162b2 was evaluated using conditional logistic and Poisson regression in nested case-control and SCCS analysis, respectively. RESULTS: A total of 54 individuals were newly diagnosed with Bell's palsy after BNT162b2 vaccinations. The incidence of Bell's palsy was 1.58 (95% CI:1.19-2.07) per 100,000 doses administered. The nested case-control analysis showed significant association between BNT162b2 vaccinations and Bell's palsy (Adjusted OR: 1.543, 95%CI:1.123 - 2.121), with up to 1.112 excess events per 100,000 people receiving two doses of BNT162b2. An increased risk of Bell's palsy was observed during the first 14 days after the second dose of BNT162b2 in both nested case-control (Adjusted OR: 2.325, 95%CI:1.414 - 3.821) and SCCS analysis (Adjusted IRR=2.44, 95%CI:1.32-4.50). CONCLUSION: There is an overall increased risk of Bell's palsy following BNT162b2 vaccination, particularly within the first 14 days after the second dose, but the absolute risk was very low.
ABSTRACT
SARS-CoV-2 has been confirmed in over 450 million confirmed cases since 2019. Although several vaccines have been certified by the WHO and people are being vaccinated on a global scale, it has been reported that multiple SARS-CoV-2 variants can escape neutralization by antibodies, resulting in vaccine breakthrough infections. Bacillus Calmette-Guérin (BCG) is known to induce heterologous protection based on trained immune responses. Here, we investigated whether BCG-induced trained immunity protected against SARS-CoV-2 in the K18-hACE2 mouse model. Our data demonstrate that i.v. BCG (BCG-i.v.) vaccination induces robust trained innate immune responses and provides protection against WT SARS-CoV-2, as well as the B.1.617.1 and B.1.617.2 variants. Further studies suggest that myeloid cell differentiation and activation of the glycolysis pathway are associated with BCG-induced training immunity in K18-hACE2 mice. Overall, our study provides the experimental evidence that establishes a causal relationship between BCG-i.v. vaccination and protection against SARS-CoV-2 challenge.
Subject(s)
COVID-19 , SARS-CoV-2 , Animals , BCG Vaccine , COVID-19/prevention & control , Humans , Melphalan , Mice , gamma-GlobulinsABSTRACT
Patients infected with SARS-CoV-2 may deteriorate rapidly and therefore continuous monitoring is necessary. We conducted an observational study involving patients with mild COVID-19 to explore the potentials of wearable biosensors and machine learning-based analysis of physiology parameters to detect clinical deterioration. Thirty-four patients (median age: 32 years; male: 52.9%) with mild COVID-19 from Queen Mary Hospital were recruited. The mean National Early Warning Score 2 (NEWS2) were 0.59 ± 0.7. 1231 manual measurement of physiology parameters were performed during hospital stay (median 15 days). Physiology parameters obtained from wearable biosensors correlated well with manual measurement including pulse rate (r = 0.96, p < 0.0001) and oxygen saturation (r = 0.87, p < 0.0001). A machine learning-derived index reflecting overall health status, Biovitals Index (BI), was generated by autonomous analysis of physiology parameters, symptoms, and other medical data. Daily BI was linearly associated with respiratory tract viral load (p < 0.0001) and NEWS2 (r = 0.75, p < 0.001). BI was superior to NEWS2 in predicting clinical worsening events (sensitivity 94.1% and specificity 88.9%) and prolonged hospitalization (sensitivity 66.7% and specificity 72.7%). Wearable biosensors coupled with machine learning-derived health index allowed automated detection of clinical deterioration.
Subject(s)
Biosensing Techniques/methods , COVID-19 , Machine Learning , Wearable Electronic Devices , Adult , Female , Humans , Male , Middle Aged , Observational Studies as Topic , Young AdultABSTRACT
BACKGROUND: A high proportion of COVID-19 patients were reported to have cardiac involvements. Data pertaining to cardiac sequalae is of urgent importance to define subsequent cardiac surveillance. METHODS: We performed a systematic cardiac screening for 97 consecutive COVID-19 survivors including electrocardiogram (ECG), echocardiography, serum troponin and NT-proBNP assay 1-4 weeks after hospital discharge. Treadmill exercise test and cardiac magnetic resonance imaging (CMR) were performed according to initial screening results. RESULTS: The mean age was 46.5 ± 18.6 years; 53.6% were men. All were classified with non-severe disease without overt cardiac manifestations and did not require intensive care. Median hospitalization stay was 17 days and median duration from discharge to screening was 11 days. Cardiac abnormalities were detected in 42.3% including sinus bradycardia (29.9%), newly detected T-wave abnormality (8.2%), elevated troponin level (6.2%), newly detected atrial fibrillation (1.0%), and newly detected left ventricular systolic dysfunction with elevated NT-proBNP level (1.0%). Significant sinus bradycardia with heart rate below 50 bpm was detected in 7.2% COVID-19 survivors, which appeared to be self-limiting and recovered over time. For COVID-19 survivors with persistent elevation of troponin level after discharge or newly detected T wave abnormality, echocardiography and CMR did not reveal any evidence of infarct, myocarditis, or left ventricular systolic dysfunction. CONCLUSION: Cardiac abnormality is common amongst COVID-survivors with mild disease, which is mostly self-limiting. Nonetheless, cardiac surveillance in form of ECG and/or serum biomarkers may be advisable to detect more severe cardiac involvement including atrial fibrillation and left ventricular dysfunction.