Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Infect Control Hosp Epidemiol ; 41(11): 1258-1265, 2020 11.
Article in English | MEDLINE | ID: covidwho-2096345

ABSTRACT

BACKGROUND: The role of severe respiratory coronavirus virus 2 (SARS-CoV-2)-laden aerosols in the transmission of coronavirus disease 2019 (COVID-19) remains uncertain. Discordant findings of SARS-CoV-2 RNA in air samples were noted in early reports. METHODS: Sampling of air close to 6 asymptomatic and symptomatic COVID-19 patients with and without surgical masks was performed with sampling devices using sterile gelatin filters. Frequently touched environmental surfaces near 21 patients were swabbed before daily environmental disinfection. The correlation between the viral loads of patients' clinical samples and environmental samples was analyzed. RESULTS: All air samples were negative for SARS-CoV-2 RNA in the 6 patients singly isolated inside airborne infection isolation rooms (AIIRs) with 12 air changes per hour. Of 377 environmental samples near 21 patients, 19 (5.0%) were positive by reverse-transcription polymerase chain reaction (RT-PCR) assay, with a median viral load of 9.2 × 102 copies/mL (range, 1.1 × 102 to 9.4 × 104 copies/mL). The contamination rate was highest on patients' mobile phones (6 of 77, 7.8%), followed by bed rails (4 of 74, 5.4%) and toilet door handles (4 of 76, 5.3%). We detected a significant correlation between viral load ranges in clinical samples and positivity rate of environmental samples (P < .001). CONCLUSION: SARS-CoV-2 RNA was not detectable by air samplers, which suggests that the airborne route is not the predominant mode of transmission of SARS-CoV-2. Wearing a surgical mask, appropriate hand hygiene, and thorough environmental disinfection are sufficient infection control measures for COVID-19 patients isolated singly in AIIRs. However, this conclusion may not apply during aerosol-generating procedures or in cohort wards with large numbers of COVID-19 patients.


Subject(s)
Air Microbiology , Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Fomites/virology , Infection Control/methods , Patients' Rooms , Pneumonia, Viral/transmission , Adolescent , Adult , Aerosols , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Female , Hospitalization , Humans , Male , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Viral Load
2.
Infect Control Hosp Epidemiol ; : 1-4, 2022 Oct 24.
Article in English | MEDLINE | ID: covidwho-2087056

ABSTRACT

We obtained 24 air samples in 8 general wards temporarily converted into negative-pressure wards admitting coronavirus disease 2019 (COVID-19) patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant BA.2.2 in Hong Kong. SARS-CoV-2 RNA was detected in 19 (79.2%) of 24 samples despite enhanced indoor air dilution. It is difficult to prevent airborne transmission of SARS-CoV-2 in hospitals.

3.
Clin Mol Hepatol ; 28(4): 890-911, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2080100

ABSTRACT

BACKGROUND/AIMS: Data of coronavirus disease 2019 (COVID-19) vaccine immunogenicity among chronic liver disease (CLD) and liver transplant (LT) patients are conflicting. We performed meta-analysis to examine vaccine immunogenicity regarding etiology, cirrhosis status, vaccine platform and type of antibody. METHODS: We collected data via three databases from inception to February 16, 2022, and reported pooled seroconversion rate, T cell response and safety data after two vaccine doses. RESULTS: Twenty-eight (CLD only: 5; LT only: 18; both: 2; LT with third dose: 3) observational studies of 3,945 patients were included. For CLD patients, seroconversion rate ranged between 84% (95% confidence interval [CI], 76-90%) and 91% (95% CI, 83-95%), based predominantly on neutralizing antibody and anti-spike antibody, respectively. Seroconversion rate was 81% (95% CI, 76-86%) in chronic hepatitis B, 96% (95% CI, 93-97%) in non-alcoholic fatty liver disease, 85% (95% CI, 75-91%) in cirrhosis and 85% (95% CI, 78-90%) in non-cirrhosis, 86% (95% CI, 78-92%) for inactivated vaccine and 89% (95% CI, 71-96%) for mRNA vaccine. The pooled seroconversion rate of anti-spike antibody was 66% (95% CI, 55-75%) after two doses of mRNA vaccines and 88% (95% CI, 58-98%) after third dose among LT recipients. T cell response rate was 65% (95% CI, 30-89%). Prevalence of adverse events was 27% (95% CI, 18-38%) and 63% (95% CI, 39-82%) among CLD and LT groups, respectively. CONCLUSION: CLD patients had good humoral response to COVID-19 vaccine, while LT recipients had lower response.


Subject(s)
COVID-19 , Liver Diseases , Liver Transplantation , Humans , COVID-19 Vaccines , Immunogenicity, Vaccine , COVID-19/prevention & control , Antibodies, Neutralizing , Vaccines, Inactivated , Antibodies, Viral
4.
Epilepsia ; 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2063698

ABSTRACT

OBJECTIVE: The risk of seizure following BNT162b2 and CoronaVac vaccinations has been sparsely investigated. This study aimed to evaluate this association. METHOD: Patients who had their first seizure-related hospitalization between February 23, 2021 and January 31, 2022, were identified in Hong Kong. All seizure episodes happening on the day of vaccination (day 0) were excluded, since clinicians validated that most of the cases on day 0 were syncopal episodes. Within-individual comparison using a modified self-controlled case series analysis was applied to estimate the incidence rate ratio (IRR) with 95% confidence intervals (CIs) of seizure using conditional Poisson regression. RESULTS: We identified 1656 individuals who had their first seizure-related hospitalization (BNT162b2: 426; CoronaVac: 263; unvaccinated: 967) within the observation period. The incidence of seizure was 1.04 (95% CI .80-1.33) and 1.11 (95% CI .80-1.50) per 100 000 doses of BNT162b2 and CoronaVac administered, respectively. Sixteen and 17 individuals, respectively, received a second dose after having a first seizure within 28 days after the first dose of BNT162b2 and CoronaVac vaccinations. None had recurrent seizures after the second dose. There was no increased risk during day 1-6 after the first (BNT162b2: IRR = 1.39, 95% CI = .75-2.58; CoronaVac: IRR = 1.19, 95% CI = .50-2.83) and second doses (BNT162b2: IRR = 1.36, 95% CI = .72-2.57; CoronaVac: IRR = .71, 95% CI = .22-2.30) of vaccinations. During 7-13, 14-20, and 21-27 days post-vaccination, no association was observed for either vaccine. SIGNIFICANCE: The findings demonstrated no increased risk of seizure following BNT162b2 and CoronaVac vaccinations. Future studies will be warranted to evaluate the risk of seizure following COVID-19 vaccinations in different populations, with subsequent doses to ensure the generalizability.

5.
Drug Saf ; 2022 Oct 02.
Article in English | MEDLINE | ID: covidwho-2048659

ABSTRACT

INTRODUCTION: In Hong Kong, CoronaVac and BNT162b2 have been approved for emergency use owing to the coronavirus disease 2019 (COVID-19) pandemic. Reactions towards the vaccine and the risk of post-vaccination adverse events may be different between recipients with and without type 2 diabetes mellitus (T2DM). OBJECTIVE: The aim of this study was to evaluate the risk of adverse events of special interest (AESI) and acute diabetic complications in the T2DM population after COVID-19 vaccination in Hong Kong. RESEARCH DESIGN AND METHODS: Self-controlled case-series analysis was conducted. Patients with T2DM who received at least one dose of BNT162b2 or CoronaVac between 23 February 2021 and 31 January 2022 from electronic health records in Hong Kong were included. The incidence rates of 29 AESIs and acute diabetic complications (any of severe hypoglycemia, diabetic ketoacidosis or hyperosmolar hyperglycemic syndrome) requiring hospitalization within 21 days after the first or second dose of vaccination were reported. The risks of these outcomes were evaluated using conditional Poisson regression. RESULTS: Among 141,224 BNT162b2 recipients and 209,739 CoronaVac recipients with T2DM, the incidence per 100,000 doses and incidence per 100,000 person-years of individual AESIs and acute diabetic complications ranged from 0 to 24.4 and 0 to 438.6 in BNT162b2 group, and 0 to 19.5 and 0 to 351.6 in CoronaVac group. We did not observe any significantly increased risk of individual AESIs or acute diabetic complications after first or second doses of BNT162b2 or CoronaVac vaccine. Subgroup analysis based on HbA1c < 7% and ≥ 7% also did not show significantly excess risk after vaccination. CONCLUSIONS: Patients with T2DM do not appear to have higher risks of AESI and acute diabetic complications after BNT162b2 or CoronaVac vaccination. Moreover, given the low incidence of AESIs and acute diabetic complications after vaccination, the absolute risk increment was likely minimal.

6.
Clin Transl Med ; 12(9): e1025, 2022 09.
Article in English | MEDLINE | ID: covidwho-2027333

ABSTRACT

BACKGROUND: Patients with COVID-19 display a broad spectrum of manifestations from asymptomatic to life-threatening disease with dysregulated immune responses. Mechanisms underlying the detrimental immune responses and disease severity remain elusive. METHODS: We investigated a total of 137 APs infected with SARS-CoV-2. Patients were divided into mild and severe patient groups based on their requirement of oxygen supplementation. All blood samples from APs were collected within three weeks after symptom onset. Freshly isolated PBMCs were investigated for B cell subsets, their homing potential, activation state, mitochondrial functionality and proliferative response. Plasma samples were tested for cytokine concentration, and titer of Nabs, RBD-, S1-, SSA/Ro- and dsDNA-specific IgG. RESULTS: While critically ill patients displayed predominantly extrafollicular B cell activation with elevated inflammation, mild patients counteracted the disease through the timely induction of mitochondrial dysfunction in B cells within the first week post symptom onset. Rapidly increased mitochondrial dysfunction, which was caused by infection-induced excessive intracellular calcium accumulation, suppressed excessive extrafollicular responses, leading to increased neutralizing potency index and decreased inflammatory cytokine production. Patients who received prior COVID-19 vaccines before infection displayed significantly decreased extrafollicular B cell responses and mild disease. CONCLUSION: Our results reveal an immune mechanism that controls SARS-CoV-2-induced detrimental B cell responses and COVID-19 severity, which may have implications for viral pathogenesis, therapeutic interventions and vaccine development.


Subject(s)
COVID-19 , Viral Vaccines , B-Lymphocytes , COVID-19 Vaccines , Cytokines , Humans , Mitochondria , SARS-CoV-2 , Severity of Illness Index , Viral Vaccines/pharmacology
7.
Clin Infect Dis ; 2022 Jun 28.
Article in English | MEDLINE | ID: covidwho-1985050

ABSTRACT

BACKGROUND: Early antiviral therapy was effective in the treatment of COVID-19. We assessed the efficacy and safety of combined interferon beta-1b and remdesivir treatment in hospitalized COVID-19 patients. METHODS: We conducted a multicentre, prospective open-label, randomized-controlled trial involving high-risk adults hospitalized for COVID-19. Patients were randomly assigned to a 5-day interferon beta-1b 16 million units daily and remdesivir 200mg loading on day 1 followed by 100mg daily on day 2 to 5 (combination-group), or to remdesivir only of similar regimen (control-group) (1:1). The primary end-point was the time to complete alleviation of symptoms (NEWS2 = 0). RESULTS: Two-hundred and twelve patients were enrolled. The median days of starting treatment from symptom-onset was 3 days. The median age was 65 years and 159 patients (75%) had chronic disease. The baseline demographics were similar. There was no mortality. For the primary-endpoint, the combination-group was significantly quicker to NEWS2 = 0 (4 versus 6.5 days; hazard-ratio [HR],6.59; 95% confidence-interval [CI],6.1-7.09; p < 0.0001) when compared to the control-group. For the secondary endpoints, the combination-group was quicker to negative NPS VL (6 versus 8 days; HR,8.16; 95% CI,7.79-8.52; p < 0.0001) and develop seropositive IgG (8 versus 10 days; HR,10.78; 95% CI,9.98-11.58; p < 0.0001). All adverse events resolved upon follow-up. Combination group (HR,4.1 95%CI,1.9-8.6, p < 0.0001), was the most significant independent factor associated with NEWS2 = 0 on day 4. CONCLUSIONS: Early treatment with interferon beta-1b and remdesivir was safe and better than remdesivir only in alleviating symptoms, shorten viral shedding and hospitalization with earlier seropositivity in high-risk COVID-19 patients.

8.
Viruses ; 14(8)2022 08 04.
Article in English | MEDLINE | ID: covidwho-1969516

ABSTRACT

Formulating termination of isolation (de-isolation) policies requires up-to-date knowledge about viral shedding dynamics. However, current de-isolation policies are largely based on viral load data obtained before the emergence of Omicron variant. In this retrospective cohort study involving adult patients hospitalised for COVID-19 between January and February 2022, we sought to determine SARS-CoV-2 viral shedding kinetics and to investigate the risk factors associated with slow viral decline during the 2022 Omicron wave. A total of 104 patients were included. The viral load was highest (Ct value was lowest) on days 1 post-symptom-onset (PSO) and gradually declined. Older age, hypertension, hyperlipidaemia and chronic kidney disease were associated with slow viral decline in the univariate analysis on both day 7 and day 10 PSO, while incomplete or no vaccination was associated with slow viral decline on day 7 PSO only. However, older age was the only risk factor that remained statistically significant in the multivariate analysis. In conclusion, older age is an independent risk factor associated with slow viral decline in this study conducted during the Omicron-dominant 2022 COVID-19 wave. Transmission-based precaution guidelines should take age into consideration when determining the timing of de-isolation.


Subject(s)
COVID-19 , Viral Load , Virus Shedding , Adult , Aged , COVID-19/virology , Humans , Retrospective Studies , Risk Factors , SARS-CoV-2
9.
Int J Biol Sci ; 18(12): 4744-4755, 2022.
Article in English | MEDLINE | ID: covidwho-1954694

ABSTRACT

Viruses exploit the host lipid metabolism machinery to achieve efficient replication. We herein characterize the lipids profile reprogramming in vitro and in vivo using liquid chromatography-mass spectrometry-based untargeted lipidomics. The lipidome of SARS-CoV-2-infected Caco-2 cells was markedly different from that of mock-infected samples, with most of the changes involving downregulation of ceramides. In COVID-19 patients' plasma samples, a total of 54 lipids belonging to 12 lipid classes that were significantly perturbed compared to non-infected control subjects' plasma samples were identified. Among these 12 lipid classes, ether-linked phosphatidylcholines, ether-linked phosphatidylethanolamines, phosphatidylcholines, and ceramides were the four most perturbed. Pathway analysis revealed that the glycerophospholipid, sphingolipid, and ether lipid metabolisms pathway were the most significantly perturbed host pathways. Phosphatidic acid phosphatases (PAP) were involved in all three pathways and PAP-1 deficiency significantly suppressed SARS-CoV-2 replication. siRNA knockdown of LPIN2 and LPIN3 resulted in significant reduction of SARS-CoV-2 load. In summary, these findings characterized the host lipidomic changes upon SARS-CoV-2 infection and identified PAP-1 as a potential target for intervention for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Caco-2 Cells , Ceramides , Ethers , Glycerophospholipids , Humans , Lipid Metabolism , Phosphatidate Phosphatase/genetics , Phosphatidate Phosphatase/metabolism , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism
12.
Clin Infect Dis ; 2022 Jun 08.
Article in English | MEDLINE | ID: covidwho-1927316

ABSTRACT

BACKGROUND: Observable symptoms of Bell's palsy following vaccinations may arouse concern over the safety profiles of novel COVID-19 vaccines in the general public. However, there are only a few studies on Bell's palsy following mRNA COVID-19 vaccination with inconclusive findings. This study aimed to update the previous analysis on the risk of Bell's palsy following mRNA (BNT162b2) COVID-19 vaccination. METHODS: This study included cases aged ≥16-years-old with a new diagnosis of Bell's palsy within 28 days after BNT162b2 vaccinations from the population-based electronic health records in Hong Kong, using a nested case-control and self-controlled case series (SCCS) analyses were employed. The association between Bell's palsy and BNT162b2 was evaluated using conditional logistic and Poisson regression in nested case-control and SCCS analysis, respectively. RESULTS: A total of 54 individuals were newly diagnosed with Bell's palsy after BNT162b2 vaccinations. The incidence of Bell's palsy was 1.58 (95% CI:1.19-2.07) per 100,000 doses administered. The nested case-control analysis showed significant association between BNT162b2 vaccinations and Bell's palsy (Adjusted OR: 1.543, 95%CI:1.123 - 2.121), with up to 1.112 excess events per 100,000 people receiving two doses of BNT162b2. An increased risk of Bell's palsy was observed during the first 14 days after the second dose of BNT162b2 in both nested case-control (Adjusted OR: 2.325, 95%CI:1.414 - 3.821) and SCCS analysis (Adjusted IRR=2.44, 95%CI:1.32-4.50). CONCLUSION: There is an overall increased risk of Bell's palsy following BNT162b2 vaccination, particularly within the first 14 days after the second dose, but the absolute risk was very low.

13.
Vaccines (Basel) ; 10(7)2022 Jul 14.
Article in English | MEDLINE | ID: covidwho-1928706

ABSTRACT

Background: Gut microbiota can be associated with COVID-19 vaccine immunogenicity. We investigated whether recent antibiotic use influences BNT162b2 vaccine immunogenicity. Methods: BNT162b2 recipients from three centers were prospectively recruited. Outcomes of interest were seroconversion of neutralising antibody (NAb) at day 21, 56 and 180 after first dose. We calculated the adjusted odds ratio (aOR) of seroconversion with antibiotic usage (defined as ever use of any antibiotics within six months before first dose of vaccine) by adjusting for covariates including age, sex, smoking, alcohol, and comorbidities. Results: Of 316 BNT162b2 recipients (100 [31.6%] male; median age: 50.1 [IQR: 40.0-57.0] years) recruited, 29 (9.2%) were antibiotic users. There was a trend of lower seroconversion rates in antibiotic users than non-users at day 21 (82.8% vs. 91.3%; p = 0.14) and day 56 (96.6% vs. 99.3%; p = 0.15), but not at day 180 (93.3% vs. 94.1%). A multivariate analysis showed that recent antibiotic usage was associated with a lower seroconversion rate at day 21 (aOR 0.26;95% CI: 0.08-0.96). Other factors associated with a lower seroconversion rate after first dose of the BNT162b2 vaccine included age ≥ 60 years (aOR: 0.34;95% CI: 0.13-0.95) and male sex (aOR: 0.14, 95% CI: 0.05-0.34). There were no significant factors associated with seroconversion after two doses of BNT16b2, including antibiotic use (aOR: 0.03;95% CI: 0.001-1.15). Conclusions: Recent antibiotic use may be associated with a lower seroconversion rate at day 21 (but not day 56 or 180) among BNT162b2 recipients. Further long-term follow-up data with a larger sample size is needed to reach a definite conclusion on how antibiotics influence immunogenicity and the durability of the vaccine response.

14.
J Clin Endocrinol Metab ; 107(9): e3781-e3789, 2022 08 18.
Article in English | MEDLINE | ID: covidwho-1916990

ABSTRACT

CONTEXT: There are concerns for COVID-19 vaccination in triggering thyroid autoimmunity and causing thyroid dysfunction. Also, data on the effect of preexisting thyroid autoimmunity on the efficacy of COVID-19 vaccination are limited. OBJECTIVES: We evaluated the effect of COVID-19 vaccination on thyroid function and antibodies, and the influence of preexisting thyroid autoimmunity on neutralizing antibody (NAb) responses. METHODS: Adults without a history of COVID-19/thyroid disorders who received the COVID-19 vaccination during June to August 2021 were recruited. All received 2 doses of vaccines. Thyrotropin (TSH), free thyroxine (fT4), free 3,5,3'-triiodothyronine (fT3), antithyroid peroxidase (anti-TPO), and antithyroglobulin (anti-Tg) antibodies were measured at baseline and 8 weeks post vaccination. NAb against SARS-CoV-2 receptor-binding domain was measured. RESULTS: A total of 215 individuals were included (129 [60%] BNT162b2; 86 [40%] CoronaVac recipients): mean age 49.6 years, 37.2% men, and 12.1% anti-TPO/Tg positive at baseline. After vaccination, TSH did not change (P = .225), but fT4 slightly increased (from 12.0 ±â€…1.1 to 12.2 ±â€…1.2 pmol/L [from 0.93 ±â€…0.09 to 0.95 ±â€…0.09 ng/dL], P < .001) and fT3 slightly decreased (from 4.1 ±â€…0.4 to 4.0 ±â€…0.4 pmol/L [from 2.67 ±â€…0.26 to 2.60 ±â€…0.26 pg/mL], P < .001). Only 3 patients (1.4%) had abnormal thyroid function post vaccination, none clinically overt. Anti-TPO and anti-Tg titers increased modestly after vaccination (P < .001), without statistically significant changes in anti-TPO/Tg positivity. Changes in thyroid function and antithyroid antibodies were consistent between BNT162b2 and CoronaVac recipients, except for greater anti-TPO titer increase post BNT162b2 (P < .001). NAb responses were similar between individuals with and without preexisting thyroid autoimmunity (P = .855). CONCLUSION: COVID-19 vaccination was associated with a modest increase in antithyroid antibody titers. Anti-TPO increase was greater among BNT162b2 recipients. However, there was no clinically significant thyroid dysfunction post vaccination. NAb responses were not influenced by preexisting thyroid autoimmunity. Our results provide important reassurance for people to receive the COVID-19 vaccination.


Subject(s)
COVID-19 , Thyroid Diseases , Adult , Antibody Formation , Autoimmunity , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Thyrotropin
15.
Lancet Healthy Longev ; 3(7): e491-e500, 2022 07.
Article in English | MEDLINE | ID: covidwho-1915223

ABSTRACT

Background: Because evidence on the safety of COVID-19 vaccines in older adults is scarce, we aimed to evaluate the incidence and risk of adverse events after CoronaVac (Sinovac Biotech) vaccination in adults aged 60 years or older. Methods: In this modified self-controlled case series, we enrolled adults aged 60 years or older who had received at least one dose of CoronaVac in Hong Kong between Feb 23, 2021, and Jan 31, 2022. We extracted population-based, electronic health record data from the clinical management system of the Hospital Authority on adverse events of special interest (from Jan 1, 2005, to Feb 23, 2022) and patients' demographic information (from Jan 1, 2018, to Jan 31, 2022), previous diagnoses (from Jan 1, 2018, to Jan 31, 2022), medication history (from Jan 1, 2018, to Jan 31, 2022), and laboratory tests, including those for SARS-CoV-2 infection (from Jan 1, 2018, to Jan 31, 2022). Details of vaccination status were provided by the Department of Health of the Hong Kong Government and were linked to data from the Hospital Authority with identity card numbers or passport numbers. Our outcomes were the overall incidence of any adverse event of special interest and the incidence rates of 30 adverse events of special interest, as suggested by the WHO Global Advisory Committee on Vaccine Safety, in the inpatient setting within 21 days (2 days for anaphylaxis) of either the first, second, or third CoronaVac dose compared with a baseline period. Individuals who had a history of a particular event between Jan 1, 2005, and Feb 23, 2021, were excluded from the corresponding analysis. We evaluated the risk of an adverse event of special interest using conditional Poisson regression, adjusting for seasonal effects. Findings: Of 1 253 497 individuals who received at least one dose of CoronaVac during the study period, 622 317 (49·6%) were aged at least 60 years and were included in the analysis. Our analysis sample received 1 229 423 doses of CoronaVac and had a mean age of 70·40 years (SD 8·10). 293 086 (47·1%) of 622 317 participants were men and 329 231 (52·9%) were women. The incidence of individual adverse events of interest ranged from 0·00 per 100 000 people to 57·49 per 100 000 people (thromboembolism). The first and third doses of CoronaVac were not associated with a significant excess risk of an adverse event of special interest within 21 days (or 2 days for anaphylaxis) of vaccination. After the second dose, the only significantly increased risk was for anaphylaxis (adjusted incidence rate ratio 2·61, 95% CI 1·08-6·31; risk difference per 100 000 people 0·61, 95% CI 0·03-1·81). Interpretation: Because older age is associated with poor outcomes after SARS-CoV-2 infection, the benefits of CoronaVac vaccination in older adults outweigh the risks in regions where COVID-19 is prevalent. Ongoing monitoring of vaccine safety is warranted. Funding: The Food and Health Bureau of the Government, Hong Kong Special Administrative Region, China and AIR@InnoHK, administered by the Innovation and Technology Commission. Translation: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Anaphylaxis , COVID-19 , Aged , COVID-19 Vaccines , Female , Hong Kong , Humans , Male , SARS-CoV-2 , Virion
16.
Nat Commun ; 13(1): 3618, 2022 Jun 24.
Article in English | MEDLINE | ID: covidwho-1908176

ABSTRACT

Monitoring population protective immunity against SARS-CoV-2 variants is critical for risk assessment. We hypothesize that Hong Kong's explosive Omicron BA.2 outbreak in early 2022 could be explained by low herd immunity. Our seroprevalence study using sera collected from January to December 2021 shows a very low prevalence of neutralizing antibodies (NAb) against ancestral virus among older adults. The age group-specific prevalence of NAb generally correlates with the vaccination uptake rate, but older adults have a much lower NAb seropositive rate than vaccination uptake rate. For all age groups, the seroprevalence of NAb against Omicron variant is much lower than that against the ancestral virus. Our study suggests that this BA.2 outbreak and the exceptionally high case-fatality rate in the ≥80 year-old age group (9.2%) could be attributed to the lack of protective immunity in the population, especially among the vulnerable older adults, and that ongoing sero-surveillance is essential.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Aged, 80 and over , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/epidemiology , Disease Outbreaks , Hong Kong/epidemiology , Humans , Seroepidemiologic Studies
17.
EClinicalMedicine ; 50: 101504, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1906956

ABSTRACT

Background: This study aims to evaluate the association between thromboembolic events and hemorrhagic stroke following BNT162b2 and CoronaVac vaccination. Methods: Patients with incident thromboembolic events or hemorrhagic stroke within 28 days of covid-19 vaccination or SARS-CoV-2 positive test during 23 February to 30 September 2021 were included. The incidence per 100,000 covid-19 vaccine doses administered and SARS-CoV-2 test positive cases were estimated. A modified self-controlled case series (SCCS) analysis using the data from the Hong Kong territory-wide electronic health and vaccination records. Seasonal effect was adjusted by month. Findings: A total of 5,526,547 doses of BNT162b2 and 3,146,741 doses of CoronaVac were administered. A total of 334 and 402 thromboembolic events, and 57 and 49 hemorrhagic stroke cases occurred within 28 days after BNT162b2 and CoronaVac vaccination, respectively. The crude incidence of thromboembolic events and hemorrhagic stroke per 100,000 doses administered for both covid-19 vaccines were smaller than that per 100,000 SARS-CoV-2 test positive cases. The modified SCCS detected an increased risk of hemorrhagic stroke in BNT162b2 14-27 days after first dose with adjusted IRR of 2.53 (95% CI 1.48-4.34), and 0-13 days after second dose with adjusted IRR 2.69 (95% CI 1.54-4.69). No statistically significant risk was observed for thromboembolic events for both vaccines. Interpretation: We detected a possible safety signal for hemorrhagic stroke following BNT162b2 vaccination. The incidence of thromboembolic event or hemorrhagic stroke following vaccination is lower than that among SARS-CoV-2 test positive cases; therefore, vaccination against covid-19 remains an important public health intervention. Funding: This study was funded by a research grant from the Food and Health Bureau, The Government of the Hong Kong Special Administrative Region (reference COVID19F01).

18.
JCI Insight ; 7(11)2022 06 08.
Article in English | MEDLINE | ID: covidwho-1892019

ABSTRACT

SARS-CoV-2 has been confirmed in over 450 million confirmed cases since 2019. Although several vaccines have been certified by the WHO and people are being vaccinated on a global scale, it has been reported that multiple SARS-CoV-2 variants can escape neutralization by antibodies, resulting in vaccine breakthrough infections. Bacillus Calmette-Guérin (BCG) is known to induce heterologous protection based on trained immune responses. Here, we investigated whether BCG-induced trained immunity protected against SARS-CoV-2 in the K18-hACE2 mouse model. Our data demonstrate that i.v. BCG (BCG-i.v.) vaccination induces robust trained innate immune responses and provides protection against WT SARS-CoV-2, as well as the B.1.617.1 and B.1.617.2 variants. Further studies suggest that myeloid cell differentiation and activation of the glycolysis pathway are associated with BCG-induced training immunity in K18-hACE2 mice. Overall, our study provides the experimental evidence that establishes a causal relationship between BCG-i.v. vaccination and protection against SARS-CoV-2 challenge.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , BCG Vaccine , COVID-19/prevention & control , Humans , Melphalan , Mice , gamma-Globulins
19.
Clin Infect Dis ; 75(1): e44-e49, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1886378

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant BA.2 sublineage has increased rapidly in Europe and Asia since January 2022. Here, we report the epidemiological and genomic analysis of a large single-source BA.2 outbreak in a housing estate. METHODS: We analyzed the epidemiological information on a community outbreak of BA.2 (STY outbreak). We performed whole viral genome sequencing using the Oxford Nanopore MinION device. We calculated the doubling time of the outbreak within a housing estate. RESULTS: The STY outbreak involved a total of 768 individuals as of 5 February 2022, including 432 residents, visitors, or staff (56.3%) from a single housing estate (KC Estate). The outbreak at the KC Estate had a short doubling time of 1.28 days (95% confidence interval: .560-1.935). The outbreak was promptly controlled with the lockdown of 3 buildings within the housing estate. Whole-genome sequencing was performed for 133 patients in the STY outbreak, including 106 residents of the KC Estate. All 133 sequences from the STY outbreak belonged to the BA.2 sublineage, and phylogenetic analysis showed that these sequences cluster together. All individuals in the STY cluster had the unique mutation C12525T. CONCLUSIONS: Our study highlights the exceptionally high transmissibility of the Omicron variant BA.2 sublineage in Hong Kong, where stringent measures are implemented as part of the elimination strategy. Continual genomic surveillance is crucial in monitoring the emergence of epidemiologically important Omicron sublineages.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Communicable Disease Control , Disease Outbreaks , Hong Kong/epidemiology , Humans , Phylogeny , SARS-CoV-2/genetics
20.
Clin Infect Dis ; 75(1): e76-e81, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1852993

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect human and other mammals, including hamsters. Syrian (Mesocricetus auratus) and dwarf (Phodopus sp.) hamsters are susceptible to SARS-CoV-2 infection in the laboratory setting. However, pet shop-related Coronavirus Disease 2019 (COVID-19) outbreaks have not been reported. METHODS: We conducted an investigation of a pet shop-related COVID-19 outbreak due to Delta variant AY.127 involving at least 3 patients in Hong Kong. We tested samples collected from the patients, environment, and hamsters linked to this outbreak and performed whole genome sequencing analysis of the reverse transcription polymerase chain reaction (RT-PCR)-positive samples. RESULTS: The patients included a pet shop keeper (Patient 1), a female customer of the pet shop (Patient 2), and the husband of Patient 2 (Patient 3). Investigation showed that 17.2% (5/29) and 25.5% (13/51) environmental specimens collected from the pet shop and its related warehouse, respectively, tested positive for SARS-CoV-2 RNA by RT-PCR. Among euthanized hamsters randomly collected from the storehouse, 3% (3/100) tested positive for SARS-CoV-2 RNA by RT-PCR and seropositive for anti-SARS-CoV-2 antibody by enzyme immunoassay. Whole genome analysis showed that although all genomes from the outbreak belonged to the Delta variant AY.127, there were at least 3 nucleotide differences among the genomes from different patients and the hamster cages. Genomic analysis suggests that multiple strains have emerged within the hamster population, and these different strains have likely transmitted to human either via direct contact or via the environment. CONCLUSIONS: Our study demonstrated probable hamster-to-human transmission of SARS-CoV-2. As pet trading is common around the world, this can represent a route of international spread of this pandemic virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Disease Outbreaks , Female , Hong Kong/epidemiology , Humans , Mammals , RNA, Viral/genetics , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL