Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Immunol ; 12: 739037, 2021.
Article in English | MEDLINE | ID: covidwho-1448729

ABSTRACT

Background: Transfusion of COVID-19 convalescent plasma (CCP) containing high titers of anti-SARS-CoV-2 antibodies serves as therapy for COVID-19 patients. Transfusions early during disease course was found to be beneficial. Lessons from the SARS-CoV-2 pandemic could inform early responses to future pandemics and may continue to be relevant in lower resource settings. We sought to identify factors correlating to high antibody titers in convalescent plasma donors and understand the magnitude and pharmacokinetic time course of both transfused antibody titers and the endogenous antibody titers in transfused recipients. Methods: Plasma samples were collected up to 174 days after convalescence from 93 CCP donors with mild disease, and from 16 COVID-19 patients before and after transfusion. Using ELISA, anti-SARS-CoV-2 Spike RBD, S1, and N-protein antibodies, as well as capacity of antibodies to block ACE2 from binding to RBD was measured in an in vitro assay. As an estimate for viral load, viral RNA and N-protein plasma levels were assessed in COVID-19 patients. Results: Anti-SARS-CoV-2 antibody levels and RBD-ACE2 blocking capacity were highest within the first 60 days after symptom resolution and markedly decreased after 120 days. Highest antibody titers were found in CCP donors that experienced fever. Effect of transfused CCP was detectable in COVID-19 patients who received high-titer CCP and had not seroconverted at the time of transfusion. Decrease in viral RNA was seen in two of these patients. Conclusion: Our results suggest that high titer CCP should be collected within 60 days after recovery from donors with past fever. The much lower titers conferred by transfused antibodies compared to endogenous production in the patient underscore the importance of providing CCP prior to endogenous seroconversion.


Subject(s)
COVID-19/therapy , Convalescence , SARS-CoV-2/immunology , Seroconversion , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/blood , Blood Donors , COVID-19/blood , COVID-19/immunology , Female , Humans , Immunization, Passive , Kinetics , Male , Middle Aged , Outpatients , RNA, Viral/blood
2.
Sci Immunol ; 5(54)2020 12 07.
Article in English | MEDLINE | ID: covidwho-963892

ABSTRACT

SARS-CoV-2-specific antibodies, particularly those preventing viral spike receptor binding domain (RBD) interaction with host angiotensin-converting enzyme 2 (ACE2) receptor, can neutralize the virus. It is, however, unknown which features of the serological response may affect clinical outcomes of COVID-19 patients. We analyzed 983 longitudinal plasma samples from 79 hospitalized COVID-19 patients and 175 SARS-CoV-2-infected outpatients and asymptomatic individuals. Within this cohort, 25 patients died of their illness. Higher ratios of IgG antibodies targeting S1 or RBD domains of spike compared to nucleocapsid antigen were seen in outpatients who had mild illness versus severely ill patients. Plasma antibody increases correlated with decreases in viral RNAemia, but antibody responses in acute illness were insufficient to predict inpatient outcomes. Pseudovirus neutralization assays and a scalable ELISA measuring antibodies blocking RBD-ACE2 interaction were well correlated with patient IgG titers to RBD. Outpatient and asymptomatic individuals' SARS-CoV-2 antibodies, including IgG, progressively decreased during observation up to five months post-infection.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Severity of Illness Index , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/blood , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/blood , COVID-19/genetics , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
3.
Cell Host Microbe ; 28(4): 516-525.e5, 2020 10 07.
Article in English | MEDLINE | ID: covidwho-743914

ABSTRACT

B cells are critical for the production of antibodies and protective immunity to viruses. Here we show that patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) who develop coronavirus disease 2019 (COVID-19) display early recruitment of B cells expressing a limited subset of IGHV genes, progressing to a highly polyclonal response of B cells with broader IGHV gene usage and extensive class switching to IgG and IgA subclasses with limited somatic hypermutation in the initial weeks of infection. We identify convergence of antibody sequences across SARS-CoV-2-infected patients, highlighting stereotyped naive responses to this virus. Notably, sequence-based detection in COVID-19 patients of convergent B cell clonotypes previously reported in SARS-CoV infection predicts the presence of SARS-CoV/SARS-CoV-2 cross-reactive antibody titers specific for the receptor-binding domain. These findings offer molecular insights into shared features of human B cell responses to SARS-CoV-2 and SARS-CoV.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/genetics , Antibody Formation , Betacoronavirus/genetics , COVID-19 , Female , HEK293 Cells , Humans , Immunogenetics , Immunoglobulin A/genetics , Immunoglobulin A/immunology , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Male , Middle Aged , Pandemics , SARS-CoV-2 , Sequence Analysis , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL