Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Open Forum Infect Dis ; 9(7): ofac275, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1961127

ABSTRACT

Background: Patient-reported outcomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are an important measure of the full burden of coronavirus disease (COVID). Here, we examine how (1) infecting genotype and COVID-19 vaccination correlate with inFLUenza Patient-Reported Outcome (FLU-PRO) Plus score, including by symptom domains, and (2) FLU-PRO Plus scores predict return to usual activities and health. Methods: The epidemiology, immunology, and clinical characteristics of pandemic infectious diseases (EPICC) study was implemented to describe the short- and long-term consequences of SARS-CoV-2 infection in a longitudinal, observational cohort. Multivariable linear regression models were run with FLU-PRO Plus scores as the outcome variable, and multivariable Cox proportional hazards models evaluated effects of FLU-PRO Plus scores on return to usual health or activities. Results: Among the 764 participants included in this analysis, 63% were 18-44 years old, 40% were female, and 51% were White. Being fully vaccinated was associated with lower total scores (ß = -0.39; 95% CI, -0.57 to -0.21). The Delta variant was associated with higher total scores (ß = 0.25; 95% CI, 0.05 to 0.45). Participants with higher FLU-PRO Plus scores were less likely to report returning to usual health and activities (health: hazard ratio [HR], 0.46; 95% CI, 0.37 to 0.57; activities: HR, 0.56; 95% CI, 0.47 to 0.67). Fully vaccinated participants were more likely to report returning to usual activities (HR, 1.24; 95% CI, 1.04 to 1.48). Conclusions: Full SARS-CoV-2 vaccination is associated with decreased severity of patient-reported symptoms across multiple domains, which in turn is likely to be associated with earlier return to usual activities. In addition, infection with the Delta variant was associated with higher FLU-PRO Plus scores than previous variants, even after controlling for vaccination status.

2.
Open Forum Infect Dis ; 9(7): ofac219, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1931882

ABSTRACT

Background: The Adaptive COVID Treatment Trial-2 (ACTT-2) found that baricitinib in combination with remdesivir therapy (BCT) sped recovery in hospitalized coronavirus disease 2019 (COVID-19) patients vs remdesivir monotherapy (RMT). We examined how BCT affected progression throughout hospitalization and utilization of intensive respiratory therapies. Methods: We characterized the clinical trajectories of 891 ACTT-2 participants requiring supplemental oxygen or higher levels of respiratory support at enrollment. We estimated the effect of BCT on cumulative incidence of clinical improvement and deterioration using competing risks models. We developed multistate models to estimate the effect of BCT on clinical improvement and deterioration and on utilization of respiratory therapies. Results: BCT resulted in more linear improvement and lower incidence of clinical deterioration compared with RMT (hazard ratio [HR], 0.74; 95% CI, 0.58 to 0.95). The benefit was pronounced among participants enrolled on high-flow oxygen or noninvasive positive-pressure ventilation. In this group, BCT sped clinical improvement (HR, 1.21; 95% CI, 0.99 to 1.51) while slowing clinical deterioration (HR, 0.71; 95% CI, 0.48 to 1.02), which reduced the expected days in ordinal score (OS) 6 per 100 patients by 74 days (95% CI, -8 to 154 days) and the expected days in OS 7 per 100 patients by 161 days (95% CI, 46 to 291 days) compared with RMT. BCT did not benefit participants who were mechanically ventilated at enrollment. Conclusions: Compared with RMT, BCT reduces the clinical burden and utilization of intensive respiratory therapies for patients requiring low-flow oxygen or noninvasive positive-pressure ventilation compared with RMT and may thereby improve care for this patient population.

3.
Open forum infectious diseases ; 2022.
Article in English | EuropePMC | ID: covidwho-1898163

ABSTRACT

Background Patient reported outcomes of SARS-CoV-2 infection are an important measure of the full burden of COVID. Here, we examine how 1) infecting genotype and COVID-19 vaccination correlate with FLU-PRO Plus score, including by symptom domains, and 2) FLU-PRO Plus scores predict return to usual activities and health. Methods The EPICC study was implemented to describe the short- and long-term consequences of SARS-CoV-2 infection in a longitudinal, observational cohort. Multivariable linear regression models were run with FLU-PRO Plus scores as the outcome variable and multivariable Cox proportional hazards models evaluated effects of FLU-PRO Plus scores on return to usual health or activities. Results Among the 764 participants included in this analysis, 63% were 18-44 years old, 40% were female, and 51% were white. Being fully vaccinated was associated with lower total scores (β=-0.39 (95% confidence interval (CI) -0.57, -0.21)). The Delta variant was associated with higher total scores (β=0.25 (95% CI 0.05, 0.45)). Participants with higher FLU-PRO Plus scores were less likely to report returning to usual health and activities (Health: hazard ratio (HR) 0.46 (95% CI 0.37, 0.57);Activities: HR 0.56 (95% CI 0.47, 0.67)). Fully vaccinated participants were more likely to report returning to usual activities (HR 1.24 (95% CI 1.04, 1.48)). Conclusions Full SARS-CoV-2 vaccination is associated with decreased severity of patient-reported symptoms across multiple domains, which in turn is likely to be associated with earlier return to usual activities. In addition, infection with the Delta variant was associated with higher FLU-PRO Plus scores than previous variants, even after controlling for vaccination status.

4.
Lancet Respir Med ; 2022 May 23.
Article in English | MEDLINE | ID: covidwho-1864689

ABSTRACT

BACKGROUND: Baricitinib and dexamethasone have randomised trials supporting their use for the treatment of patients with COVID-19. We assessed the combination of baricitinib plus remdesivir versus dexamethasone plus remdesivir in preventing progression to mechanical ventilation or death in hospitalised patients with COVID-19. METHODS: In this randomised, double-blind, double placebo-controlled trial, patients were enrolled at 67 trial sites in the USA (60 sites), South Korea (two sites), Mexico (two sites), Singapore (two sites), and Japan (one site). Hospitalised adults (≥18 years) with COVID-19 who required supplemental oxygen administered by low-flow (≤15 L/min), high-flow (>15 L/min), or non-invasive mechanical ventilation modalities who met the study eligibility criteria (male or non-pregnant female adults ≥18 years old with laboratory-confirmed SARS-CoV-2 infection) were enrolled in the study. Patients were randomly assigned (1:1) to receive either baricitinib, remdesivir, and placebo, or dexamethasone, remdesivir, and placebo using a permuted block design. Randomisation was stratified by study site and baseline ordinal score at enrolment. All patients received remdesivir (≤10 days) and either baricitinib (or matching oral placebo) for a maximum of 14 days or dexamethasone (or matching intravenous placebo) for a maximum of 10 days. The primary outcome was the difference in mechanical ventilation-free survival by day 29 between the two treatment groups in the modified intention-to-treat population. Safety analyses were done in the as-treated population, comprising all participants who received one dose of the study drug. The trial is registered with ClinicalTrials.gov, NCT04640168. FINDINGS: Between Dec 1, 2020, and April 13, 2021, 1047 patients were assessed for eligibility. 1010 patients were enrolled and randomly assigned, 516 (51%) to baricitinib plus remdesivir plus placebo and 494 (49%) to dexamethasone plus remdesivir plus placebo. The mean age of the patients was 58·3 years (SD 14·0) and 590 (58%) of 1010 patients were male. 588 (58%) of 1010 patients were White, 188 (19%) were Black, 70 (7%) were Asian, and 18 (2%) were American Indian or Alaska Native. 347 (34%) of 1010 patients were Hispanic or Latino. Mechanical ventilation-free survival by day 29 was similar between the study groups (Kaplan-Meier estimates of 87·0% [95% CI 83·7 to 89·6] in the baricitinib plus remdesivir plus placebo group and 87·6% [84·2 to 90·3] in the dexamethasone plus remdesivir plus placebo group; risk difference 0·6 [95% CI -3·6 to 4·8]; p=0·91). The odds ratio for improved status in the dexamethasone plus remdesivir plus placebo group compared with the baricitinib plus remdesivir plus placebo group was 1·01 (95% CI 0·80 to 1·27). At least one adverse event occurred in 149 (30%) of 503 patients in the baricitinib plus remdesivir plus placebo group and 179 (37%) of 482 patients in the dexamethasone plus remdesivir plus placebo group (risk difference 7·5% [1·6 to 13·3]; p=0·014). 21 (4%) of 503 patients in the baricitinib plus remdesivir plus placebo group had at least one treatment-related adverse event versus 49 (10%) of 482 patients in the dexamethasone plus remdesivir plus placebo group (risk difference 6·0% [2·8 to 9·3]; p=0·00041). Severe or life-threatening grade 3 or 4 adverse events occurred in 143 (28%) of 503 patients in the baricitinib plus remdesivir plus placebo group and 174 (36%) of 482 patients in the dexamethasone plus remdesivir plus placebo group (risk difference 7·7% [1·8 to 13·4]; p=0·012). INTERPRETATION: In hospitalised patients with COVID-19 requiring supplemental oxygen by low-flow, high-flow, or non-invasive ventilation, baricitinib plus remdesivir and dexamethasone plus remdesivir resulted in similar mechanical ventilation-free survival by day 29, but dexamethasone was associated with significantly more adverse events, treatment-related adverse events, and severe or life-threatening adverse events. A more individually tailored choice of immunomodulation now appears possible, where side-effect profile, ease of administration, cost, and patient comorbidities can all be considered. FUNDING: National Institute of Allergy and Infectious Diseases.

5.
Clin Infect Dis ; 2022 May 24.
Article in English | MEDLINE | ID: covidwho-1860831

ABSTRACT

BACKGROUND: Comparing humoral responses in SARS-CoV-2 vaccinees, those with SARS-CoV-2 infection, or combinations of vaccine/infection ('hybrid immunity'), may clarify predictors of vaccine immunogenicity. METHODS: We studied 2660 U.S. Military Health System beneficiaries with a history of SARS-CoV-2 infection-alone (n = 705), vaccination-alone (n = 932), vaccine-after-infection (n = 869), and vaccine-breakthrough-infection (n = 154). Peak anti-spike-IgG responses through 183 days were compared, with adjustment for vaccine product, demography, and comorbidities. We excluded those with evidence of clinical or sub-clinical SARS-CoV-2 reinfection from all groups. RESULTS: Multivariable regression results indicated vaccine-after-infection anti-spike-IgG responses were higher than infection-alone (p < 0.01), regardless of prior infection severity. An increased time between infection and vaccination was associated with a greater post-vaccination IgG response (p < 0.01). Vaccination-alone elicited a greater IgG response, but more rapid waning of IgG (p < 0.01), compared to infection-alone (p < 0.01). BNT162b2 and mRNA-1273 vaccine-receipt was associated with greater IgG responses compared to JNJ-78436735 (p < 0.01), regardless of infection history. Those with vaccine-after-infection or vaccine-breakthrough-infection had a more durable anti-spike-IgG response compared to infection-alone (p < 0.01). CONCLUSIONS: Vaccine-receipt elicited higher anti-spike-IgG responses than infection-alone, although IgG levels waned faster in those vaccinated (compared to infection-alone). Vaccine-after-infection elicits a greater humoral response compared to vaccine or infection alone; and the timing, but not disease severity, of prior infection predicted these post-vaccination IgG responses. While differences between groups were small in magnitude, these results offer insights into vaccine immunogenicity variations that may help inform vaccination timing strategies.

6.
Clin Infect Dis ; 74(12): 2209-2217, 2022 07 06.
Article in English | MEDLINE | ID: covidwho-1706701

ABSTRACT

BACKGROUND: The Adaptive Coronavirus Disease 2019 (COVID-19) Treatment Trial-1 (ACTT-1) found that remdesivir therapy hastened recovery in patients hospitalized with COVID-19, but the pathway for this improvement was not explored. We investigated how the dynamics of clinical progression changed along 4 pathways: recovery, improvement in respiratory therapy requirement, deterioration in respiratory therapy requirement, and death. METHODS: We analyzed trajectories of daily ordinal severity scores reflecting oxygen requirements of 1051 patients hospitalized with COVID-19 who participated in ACTT-1. We developed competing risks models that estimate the effect of remdesivir therapy on cumulative incidence of clinical improvement and deterioration, and multistate models that utilize the entirety of each patient's clinical course to characterize the effect of remdesivir on progression along the 4 pathways above. RESULTS: Based on a competing risks analysis, remdesivir reduced clinical deterioration (hazard ratio [HR], 0.73; 95% confidence interval [CI]: .59-.91) and increased clinical improvement (HR, 1.22; 95% CI: 1.08, 1.39) relative to baseline. Our multistate models indicate that remdesivir inhibits worsening to ordinal scores of greater clinical severity among patients on room air or low-flow oxygen (HR, 0.74; 95% CI: .57-.94) and among patients receiving mechanical ventilation or high-flow oxygen/noninvasive positive-pressure ventilation (HR, 0.73; 95% CI: .53-1.00) at baseline. We also find that remdesivir reduces expected intensive care respiratory therapy utilization among patients not mechanically ventilated at baseline. CONCLUSIONS: Remdesivir speeds time to recovery by preventing worsening to clinical states that would extend the course of hospitalization and increase intensive respiratory support, thereby reducing the overall demand for hospital care.


Subject(s)
COVID-19 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents , COVID-19/drug therapy , Critical Care , Humans , Oxygen , SARS-CoV-2
7.
Open Forum Infect Dis ; 9(3): ofab623, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1684764

ABSTRACT

BACKGROUND: Nasopharyngeal (NP) swabs are the standard for SARS-CoV-2 diagnosis. If less invasive alternatives to NP swabs (eg, oropharyngeal [OP] or nasal swabs [NS]) are comparably sensitive, the use of these techniques may be preferable in terms of comfort, convenience, and safety. METHODS: This study compared the detection of SARS-CoV-2 in swab samples collected on the same day among participants with at least one positive PCR test. RESULTS: Overall, 755 participants had at least one set of paired swabs. Concordance between NP and other swab types was 75% (NS), 72% (OP), 54% (rectal swabs [RS]), and 78% (NS/OP combined). Kappa values were moderate for the NS, OP, and NS/OP comparisons (0.50, 0.45, and 0.54, respectively). Highest sensitivity relative to NP (0.87) was observed with a combination of NS/OP tests (positive if either NS or OP was positive). Sensitivity of the non-NP swab types was highest in the first week postsymptom onset and decreased thereafter. Similarly, virus RNA quantity was highest in the NP swabs as compared with NS, OP, and RS within two weeks postsymptom onset. OP and NS performance decreased as virus RNA quantity decreased. No differences were noted between NS specimens collected at home or in clinic. CONCLUSIONS: NP swabs detected more SARS-CoV-2 cases than non-NP swabs, and the sensitivity of the non-NP swabs decreased with time postsymptom onset. While other swabs may be simpler to collect, NP swabs present the best chance of detecting SARS-CoV-2 RNA, which is essential for clinical care as well as genomic surveillance.

8.
Open forum infectious diseases ; 8(Suppl 1):S273-S273, 2021.
Article in English | EuropePMC | ID: covidwho-1602411

ABSTRACT

Background The risk factors of venous thromboembolism (VTE) in COVID-19 warrant further study. We leveraged a cohort in the Military Health System (MHS) to identify clinical and virological predictors of incident deep venous thrombosis (DVT), pulmonary embolism (PE), and other VTE within 90-days after COVID-19 onset. Methods PCR or serologically-confirmed SARS-CoV-2 infected MHS beneficiaries were enrolled via nine military treatment facilities (MTF) through April 2021. Case characteristics were derived from interview and review of the electronic medical record (EMR) through one-year follow-up in outpatients and inpatients. qPCR was performed on upper respiratory swab specimens collected post-enrollment to estimate SARS-CoV-2 viral load. The frequency of incident DVT, PE, or other VTE by 90-days post-COVID-19 onset were ascertained by ICD-10 code. Correlates of 90-day VTE were determined through multivariate logistic regression, including age and sampling-time-adjusted log10-SARS-CoV-2 GE/reaction as a priori predictors in addition to other demographic and clinical covariates which were selected through stepwise regression. Results 1473 participants with SARS-CoV-2 infection were enrolled through April 2021. 21% of study participants were inpatients;the mean age was 41 years (SD = 17.0 years). The median Charlson Comorbidity Index score was 0 (IQR = 0 - 1, range = 0 - 13). 27 (1.8%) had a prior history of VTE. Mean maximum viral load observed was 1.65 x 107 genome equivalents/reaction. 36 (2.4%) of all SARS-CoV-2 cases (including inpatients and outpatients), 29 (9.5%) of COVID-19 inpatients, and 7 (0.6%) of outpatients received an ICD-10 diagnosis of any VTE within 90 days after COVID-19 onset. Logistic regression identified hospitalization (aOR = 11.1, p = 0.003) and prior VTE (aOR = 6.2 , p = 0.009) as independent predictors of VTE within 90 days of symptom onset. Neither age (aOR = 1.0, p = 0.50), other demographic covariates, other comorbidities, nor SARS-CoV-2 viral load (aOR = 1.1, p = 0.60) were associated with 90-day VTE. Conclusion VTE was relatively frequent in this MHS cohort. SARS-CoV-2 viral load did not increase the odds of 90-day VTE. Rather, being hospitalized for SARS-CoV-2 and prior VTE history remained the strongest predictors of this complication. Disclosures Simon Pollett, MBBS, Astra Zeneca (Other Financial or Material Support, HJF, in support of USU IDCRP, funded under a CRADA to augment the conduct of an unrelated Phase III COVID-19 vaccine trial sponsored by AstraZeneca as part of USG response (unrelated work)) Ryan C. Maves, MD, EMD Serono (Advisor or Review Panel member)Heron Therapeutics (Advisor or Review Panel member) David A. Lindholm, MD, American Board of Internal Medicine (Individual(s) Involved: Self): Member of Auxiliary R&D Infectious Disease Item-Writer Task Force. No financial support received. No exam questions will be disclosed ., Other Financial or Material Support David Tribble, M.D., DrPH, Astra Zeneca (Other Financial or Material Support, HJF, in support of USU IDCRP, funded under a CRADA to augment the conduct of an unrelated Phase III COVID-19 vaccine trial sponsored by AstraZeneca as part of USG response (unrelated work))

10.
J Infect Dis ; 224(12): 2010-2019, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1574912

ABSTRACT

BACKGROUND: Characterizing the longevity and quality of cellular immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enhances understanding of coronavirus disease 2019 (COVID-19) immunity that influences clinical outcomes. Prior studies suggest SARS-CoV-2-specific T cells are present in peripheral blood 10 months after infection. Analysis of the function, durability, and diversity of cellular response long after natural infection, over a range of ages and disease phenotypes, is needed to identify preventative and therapeutic interventions. METHODS: We identified participants in our multisite longitudinal, prospective cohort study 12 months after SARS-CoV-2 infection representing a range of disease severity. We investigated function, phenotypes, and frequency of T cells specific for SARS-CoV-2 using intracellular cytokine staining and spectral flow cytometry, and compared magnitude of SARS-CoV-2-specific antibodies. RESULTS: SARS-CoV-2-specific antibodies and T cells were detected 12 months postinfection. Severe acute illness was associated with higher frequencies of SARS-CoV-2-specific CD4 T cells and antibodies at 12 months. In contrast, polyfunctional and cytotoxic T cells responsive to SARS-CoV-2 were identified in participants over a wide spectrum of disease severity. CONCLUSIONS: SARS-CoV-2 infection induces polyfunctional memory T cells detectable at 12 months postinfection, with higher frequency noted in those who experienced severe disease.


Subject(s)
COVID-19/immunology , COVID-19/virology , Immunologic Memory , SARS-CoV-2/immunology , T-Lymphocyte Subsets/immunology , Adult , Antibodies, Viral , Antigens, Viral , Biomarkers , COVID-19/diagnosis , COVID-19/epidemiology , Female , Humans , Immunity, Cellular , Longitudinal Studies , Male , Middle Aged , Prospective Studies , Severity of Illness Index , T-Lymphocyte Subsets/metabolism , Time Factors
11.
Open Forum Infect Dis ; 8(12): ofab556, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1575421

ABSTRACT

BACKGROUND: We evaluated clinical outcomes, functional burden, and complications 1 month after coronavirus disease 2019 (COVID-19) infection in a prospective US Military Health System (MHS) cohort of active duty, retiree, and dependent populations using serial patient-reported outcome surveys and electronic medical record (EMR) review. METHODS: MHS beneficiaries presenting at 9 sites across the United States with a positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) test, a COVID-19-like illness, or a high-risk SARS-CoV-2 exposure were eligible for enrollment. Medical history and clinical outcomes were collected through structured interviews and International Classification of Diseases-based EMR review. Risk factors associated with hospitalization were determined by multivariate logistic regression. RESULTS: A total of 1202 participants were enrolled. There were 1070 laboratory-confirmed SARS-CoV-2 cases and 132 SARS-CoV-2-negative participants. In the first month post-symptom onset among the SARS-CoV-2-positive cases, there were 212 hospitalizations, 80% requiring oxygen, 20 ICU admissions, and 10 deaths. Risk factors for COVID-19-associated hospitalization included race (increased for Asian, Black, and Hispanic compared with non-Hispanic White), age (age 45-64 and 65+ compared with <45), and obesity (BMI≥30 compared with BMI<30). Over 2% of survey respondents reported the need for supplemental oxygen, and 31% had not returned to normal daily activities at 1 month post-symptom onset. CONCLUSIONS: Older age, reporting Asian, Black, or Hispanic race/ethnicity, and obesity are associated with SARS-CoV-2 hospitalization. A proportion of acute SARS-CoV-2 infections require long-term oxygen therapy; the impact of SARS-CoV-2 infection on short-term functional status was substantial. A significant number of MHS beneficiaries had not yet returned to normal activities by 1 month.

14.
Open Forum Infect Dis ; 8(12): ofab517, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1570092

ABSTRACT

BACKGROUND: The inFLUenza Patient-Reported Outcome Plus (FLU-PRO Plus) is a patient-reported outcome data collection instrument assessing symptoms of viral respiratory tract infections across 8 body systems. This study evaluated the measurement properties of FLU-PRO Plus in a study enrolling individuals with coronavirus disease 2019 (COVID-19). METHODS: Data from a prospective cohort study (EPICC) in US Military Health System beneficiaries evaluated for COVID-19 was utilized. Adults with symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with FLU-PRO Plus survey information within 1 week of symptom onset were included. Reliability of FLU-PRO Plus was estimated using intraclass correlation coefficient (ICC; 2 days' reproducibility). Known-groups validity was assessed using patient global assessment (PGA) of disease severity. Patient report of return to usual health was used to assess responsiveness (day 1-6/7). RESULTS: Two hundred twenty-six SARS-CoV-2-positive participants were included in the analysis. Reliability among those who reported no change in their symptoms from one day to the next was high for most domains (ICC range, 0.68-0.94 for day 1 to day 2). Construct validity was demonstrated by moderate to high correlation between the PGA rating of disease severity and domain and total scores (eg, total scores correlation: 0.69 [influenza-like illness severity], 0.69 [interference in daily activities], and -0.58 [physical health]). In addition, FLU-PRO Plus demonstrated good known-groups validity, with increasing domain and total scores observed with increasing severity ratings. CONCLUSIONS: FLU-PRO Plus performs well in measuring signs and symptoms in SARS-CoV-2 infection with excellent construct validity, known-groups validity, and responsiveness to change. Standardized data collection instruments facilitate meta-analyses, vaccine effectiveness studies, and other COVID-19 research activities.

15.
Open forum infectious diseases ; 8(Suppl 1):S24-S25, 2021.
Article in English | EuropePMC | ID: covidwho-1564722

ABSTRACT

Background The long-term health effects after SARS-CoV-2 infection remain poorly understood. We evaluated health and healthcare usage after SARS-CoV-2 infection via surveys and longitudinal electronic medical record (EMR) review within the Military Health System (MHS). Methods We studied MHS beneficiaries enrolled in the Epidemiology, Immunology, and Clinical Characteristics of Emerging Infectious Diseases with Pandemic Potential (EPICC) cohort from March to December 2020. COVID-19 illness symptom severity and duration were derived from surveys initiated in late 2020. In addition, multi-year healthcare encounter history before and after onset of COVID-19 symptoms was collected from the MHS EMR. Odds of organ-system clinical diagnoses within the 3 months pre- and post-symptom onset were calculated using generalized linear models, controlling for age, sex, and race, and including participant as a random effect. Results 1,015 participants were included who were SARS-CoV-2 positive, symptomatic, and had 3-month follow-up data available in the EMR (Table 1). 625 of these participants had survey data collected more than 28 days post-symptom onset, among whom 17% and 6% reported persistent symptoms at 28-84 days, and 85+ days, respectively. 9.6% had not resumed normal activities by one month. The most frequently reported symptoms persisting beyond 28 days were dyspnea, loss of smell and/or taste, fatigue, and exercise intolerance (Figure 1A). When compared with the period 61 to 90 days prior to symptom onset, the first month post-symptom onset period was associated with increases of pulmonary (aOR = 57, 95% CI 28-112), renal (aOR = 29, 95% CI 10-84), cardiovascular (aOR = 7, 95% CI 5-11), and neurological diagnoses (aOR = 3, 95% CI 2-4) (Figures 1B and 1C). Cardiovascular disease diagnoses remained elevated through 3 months (aOR = 2, 95% CI 1-3). Table 1. Characteristics of SARS-CoV-2+ EPICC participants, and illness duration among those with 28+ days post-symptom onset survey data collection. Figure 1 Fig1A. Symptoms reported by EPICC participants with illnesses longer than 28 days;1B. Percent of participants with organ system specific diagnoses on each day, 90 days pre- and post-symptom onset;1C. Odds of organ system specific diagnoses within each month, +/- 3 months of symptom onset, were calculated using generalized linear models, controlling for age, sex, and race and included participants as a random effect. Odds shown are relative to the earliest period included in the model, 61-90 days before onset. Conclusion In this MHS cohort, a significant proportion of participants had persistent symptoms and cardiovascular disease diagnoses 3 months after COVID-19 illness onset. These findings emphasize the long-term morbidity of COVID-19 and the importance of mitigating SARS-CoV-2 infections. Further analyses will evaluate demographic, clinical, and biomarker predictors of medium-to-long term organ-specific post-acute sequelae. Disclosures Simon Pollett, MBBS, Astra Zeneca (Other Financial or Material Support, HJF, in support of USU IDCRP, funded under a CRADA to augment the conduct of an unrelated Phase III COVID-19 vaccine trial sponsored by AstraZeneca as part of USG response (unrelated work)) Ryan C. Maves, MD, EMD Serono (Advisor or Review Panel member)Heron Therapeutics (Advisor or Review Panel member) David A. Lindholm, MD, American Board of Internal Medicine (Individual(s) Involved: Self): Member of Auxiliary R&D Infectious Disease Item-Writer Task Force. No financial support received. No exam questions will be disclosed ., Other Financial or Material Support

16.
Open forum infectious diseases ; 8(Suppl 1):S331-S332, 2021.
Article in English | EuropePMC | ID: covidwho-1564090

ABSTRACT

Background The novel coronavirus disease 2019 (COVID-19) pandemic remains a global challenge. Accurate COVID-19 prognosis remains an important aspect of clinical management. While many prognostic systems have been proposed, most are derived from analyses of individual symptoms or biomarkers. Here, we take a machine learning approach to first identify discrete clusters of early stage-symptoms which may delineate groups with distinct symptom phenotypes. We then sought to identify whether these groups correlate with subsequent disease severity. Methods The Epidemiology, Immunology, and Clinical Characteristics of Emerging Infectious Diseases with Pandemic Potential (EPICC) study is a longitudinal cohort study with data and biospecimens collected from nine military treatment facilities over 1 year of follow-up. Demographic and clinical characteristics were measured with interviews and electronic medical record review. Early symptoms by organ-domain were measured by FLU-PRO-plus surveys collected for 14 days post-enrollment, with surveys completed a median 14.5 (Interquartile Range, IQR = 13) days post-symptom onset. Using these FLU-PRO-plus responses, we applied principal component analysis followed by unsupervised machine learning algorithm k-means to identify groups with distinct clusters of symptoms. We then fit multivariate logistic regression models to determine how these early-symptom clusters correlated with hospitalization risk after controlling for age, sex, race, and obesity. Results Using SARS-CoV-2 positive participants (n = 1137) from the EPICC cohort (Figure 1), we transformed reported symptoms into domains and identified three groups of participants with distinct clusters of symptoms. Logistic regression demonstrated that cluster-2 was associated with an approximately three-fold increased odds [3.01 (95% CI: 2-4.52);P < 0.001] of hospitalization which remained significant after controlling for other factors [2.97 (95% CI: 1.88-4.69);P < 0.001]. (A) Baseline characteristics of SARS-CoV-2 positive participants. (B) Heatmap comparing FLU-PRO response in each participant. (C) Principal component analysis followed by k-means clustering identified three groups of participants. (D) Crude and adjusted association of identified cluster with hospitalization. Conclusion Our findings have identified three distinct groups with early-symptom phenotypes. With further validation of the clusters’ significance, this tool could be used to improve COVID-19 prognosis in a precision medicine framework and may assist in patient triaging and clinical decision-making. Disclaimer Disclosures David A. Lindholm, MD, American Board of Internal Medicine (Individual(s) Involved: Self): Member of Auxiliary R&D Infectious Disease Item-Writer Task Force. No financial support received. No exam questions will be disclosed ., Other Financial or Material Support Ryan C. Maves, MD, EMD Serono (Advisor or Review Panel member)Heron Therapeutics (Advisor or Review Panel member) Simon Pollett, MBBS, Astra Zeneca (Other Financial or Material Support, HJF, in support of USU IDCRP, funded under a CRADA to augment the conduct of an unrelated Phase III COVID-19 vaccine trial sponsored by AstraZeneca as part of USG response (unrelated work))

17.
J Infect Dis ; 224(9): 1462-1472, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1522217

ABSTRACT

BACKGROUND: The mechanisms underlying the association between obesity and coronavirus disease 2019 (COVID-19) severity remain unclear. After verifying that obesity was a correlate of severe COVID-19 in US Military Health System (MHS) beneficiaries, we compared immunological and virological phenotypes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in both obese and nonobese participants. METHODS: COVID-19-infected MHS beneficiaries were enrolled, and anthropometric, clinical, and demographic data were collected. We compared the SARS-CoV-2 peak IgG humoral response and reverse-transcription polymerase chain reaction viral load in obese and nonobese patients, stratified by hospitalization, utilizing logistic regression models. RESULTS: Data from 511 COVID-19 patients were analyzed, among whom 24% were obese and 14% severely obese. Obesity was independently associated with hospitalization (adjusted odds ratio [aOR], 1.91; 95% confidence interval [CI], 1.15-3.18) and need for oxygen therapy (aOR, 3.39; 95% CI, 1.61-7.11). In outpatients, severely obese had a log10 (1.89) higher nucleocapsid (N1) genome equivalents (GE)/reaction and log10 (2.62) higher N2 GE/reaction than nonobese (P = 0.03 and P < .001, respectively). We noted a correlation between body mass index and peak anti-spike protein IgG in inpatients and outpatients (coefficient = 5.48, P < .001). CONCLUSIONS: Obesity is a strong correlate of COVID-19 severity in MHS beneficiaries. These findings offer new pathophysiological insights into the relationship between obesity and COVID-19 severity.


Subject(s)
COVID-19/complications , Obesity/complications , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral , Body Weight , COVID-19/diagnosis , Female , Hospitalization , Humans , Immunoglobulin G/blood , Male , Middle Aged , Military Health Services , Obesity/epidemiology , Prevalence , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Severity of Illness Index , Viral Load , Young Adult
18.
J Infect Dis ; 224(12): 2010-2019, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1483460

ABSTRACT

BACKGROUND: Characterizing the longevity and quality of cellular immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enhances understanding of coronavirus disease 2019 (COVID-19) immunity that influences clinical outcomes. Prior studies suggest SARS-CoV-2-specific T cells are present in peripheral blood 10 months after infection. Analysis of the function, durability, and diversity of cellular response long after natural infection, over a range of ages and disease phenotypes, is needed to identify preventative and therapeutic interventions. METHODS: We identified participants in our multisite longitudinal, prospective cohort study 12 months after SARS-CoV-2 infection representing a range of disease severity. We investigated function, phenotypes, and frequency of T cells specific for SARS-CoV-2 using intracellular cytokine staining and spectral flow cytometry, and compared magnitude of SARS-CoV-2-specific antibodies. RESULTS: SARS-CoV-2-specific antibodies and T cells were detected 12 months postinfection. Severe acute illness was associated with higher frequencies of SARS-CoV-2-specific CD4 T cells and antibodies at 12 months. In contrast, polyfunctional and cytotoxic T cells responsive to SARS-CoV-2 were identified in participants over a wide spectrum of disease severity. CONCLUSIONS: SARS-CoV-2 infection induces polyfunctional memory T cells detectable at 12 months postinfection, with higher frequency noted in those who experienced severe disease.


Subject(s)
COVID-19/immunology , COVID-19/virology , Immunologic Memory , SARS-CoV-2/immunology , T-Lymphocyte Subsets/immunology , Adult , Antibodies, Viral , Antigens, Viral , Biomarkers , COVID-19/diagnosis , COVID-19/epidemiology , Female , Humans , Immunity, Cellular , Longitudinal Studies , Male , Middle Aged , Prospective Studies , Severity of Illness Index , T-Lymphocyte Subsets/metabolism , Time Factors
19.
Clin Infect Dis ; 74(12): 2209-2217, 2022 07 06.
Article in English | MEDLINE | ID: covidwho-1364781

ABSTRACT

BACKGROUND: The Adaptive Coronavirus Disease 2019 (COVID-19) Treatment Trial-1 (ACTT-1) found that remdesivir therapy hastened recovery in patients hospitalized with COVID-19, but the pathway for this improvement was not explored. We investigated how the dynamics of clinical progression changed along 4 pathways: recovery, improvement in respiratory therapy requirement, deterioration in respiratory therapy requirement, and death. METHODS: We analyzed trajectories of daily ordinal severity scores reflecting oxygen requirements of 1051 patients hospitalized with COVID-19 who participated in ACTT-1. We developed competing risks models that estimate the effect of remdesivir therapy on cumulative incidence of clinical improvement and deterioration, and multistate models that utilize the entirety of each patient's clinical course to characterize the effect of remdesivir on progression along the 4 pathways above. RESULTS: Based on a competing risks analysis, remdesivir reduced clinical deterioration (hazard ratio [HR], 0.73; 95% confidence interval [CI]: .59-.91) and increased clinical improvement (HR, 1.22; 95% CI: 1.08, 1.39) relative to baseline. Our multistate models indicate that remdesivir inhibits worsening to ordinal scores of greater clinical severity among patients on room air or low-flow oxygen (HR, 0.74; 95% CI: .57-.94) and among patients receiving mechanical ventilation or high-flow oxygen/noninvasive positive-pressure ventilation (HR, 0.73; 95% CI: .53-1.00) at baseline. We also find that remdesivir reduces expected intensive care respiratory therapy utilization among patients not mechanically ventilated at baseline. CONCLUSIONS: Remdesivir speeds time to recovery by preventing worsening to clinical states that would extend the course of hospitalization and increase intensive respiratory support, thereby reducing the overall demand for hospital care.


Subject(s)
COVID-19 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents , COVID-19/drug therapy , Critical Care , Humans , Oxygen , SARS-CoV-2
20.
J Clin Med ; 10(11)2021 Jun 01.
Article in English | MEDLINE | ID: covidwho-1256590

ABSTRACT

Since the initial identification of the novel coronavirus SARS-CoV-2 in December 2019, the COVID-19 pandemic has become a leading cause of morbidity and mortality worldwide. As effective vaccines and treatments begin to emerge, it will become increasingly important to identify and proactively manage the long-term respiratory complications of severe disease. The patterns of imaging abnormalities coupled with data from prior coronavirus outbreaks suggest that patients with severe COVID-19 pneumonia are likely at an increased risk of progression to interstitial lung disease (ILD) and chronic pulmonary vascular disease. In this paper, we briefly review the definition, classification, and underlying pathophysiology of interstitial lung disease (ILD). We then review the current literature on the proposed mechanisms of lung injury in severe COVID-19 infection, and outline potential viral- and immune-mediated processes implicated in the development of post-COVID-19 pulmonary fibrosis (PCPF). Finally, we address patient-specific and iatrogenic risk factors that could lead to PCPF and discuss strategies for reducing risk of pulmonary complications/sequelae.

SELECTION OF CITATIONS
SEARCH DETAIL