Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell Host Microbe ; 30(2): 154-162.e5, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1708092

ABSTRACT

Characterizing SARS-CoV-2 evolution in specific geographies may help predict properties of the variants that come from these regions. We mapped neutralization of a SARS-CoV-2 strain that evolved over 6 months from ancestral virus in a person with advanced HIV disease in South Africa; this person was infected prior to emergence of the Beta and Delta variants. We longitudinally tracked the evolved virus and tested it against self-plasma and convalescent plasma from ancestral, Beta, and Delta infections. Early virus was similar to ancestral, but it evolved a multitude of mutations found in Omicron and other variants. It showed substantial but incomplete Pfizer BNT162b2 escape, weak neutralization by self-plasma, and despite pre-dating Delta, it also showed extensive escape of Delta infection-elicited neutralization. This example is consistent with the notion that SARS-CoV-2 evolving in individual immune-compromised hosts, including those with advanced HIV disease, may gain immune escape of vaccines and enhanced escape of Delta immunity, and this has implications for vaccine breakthrough and reinfections.


Subject(s)
Antibodies, Neutralizing/blood , HIV Infections/pathology , Immune Evasion/immunology , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Adult , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Cell Line , Chlorocebus aethiops , Female , HIV-1/immunology , Humans , Immunocompromised Host/immunology , Neutralization Tests , SARS-CoV-2/isolation & purification , South Africa , Vaccination , Vero Cells
2.
Clin Infect Dis ; 2021 Sep 02.
Article in English | MEDLINE | ID: covidwho-1700901

ABSTRACT

BACKGROUND: There is limited understanding of SARS-CoV-2 pathogenesis in African populations with a high burden of infectious disease comorbidities such as HIV. The kinetics, magnitude and duration of virus-specific antibodies and the underlying B cell responses in people living with HIV (PLWH) in sub-Saharan Africa have not been fully characterized. METHODS: We longitudinally followed SARS-CoV-2 infected individuals in Durban, KwaZulu-Natal, South Africa and characterized SARS-CoV-2 receptor binding domain-specific IgM, IgG and IgA antibodies weekly for a month, and then at 3 months post diagnosis. 7/30 (41.7%) were PLWH, 83% (25/30) of which were on ART and with full HIV suppression. Potency of convalescent plasma neutralization was determined using a live virus neutralization assay and antibody secreting cell population frequencies were determined by flow cytometry. RESULTS: Similar seroconversion rates, time to peak antibody titer, peak magnitude and durability of anti-SARS-CoV-2 IgM, IgG, IgA, were observed in HIV uninfected and PLWH with complete HIV suppression on ART. In addition, similar neutralization potency against an isolate of SARS-CoV-2, circulating at the time of sampling in the first wave of SARS-CoV-2 infections in South Africa was observed in both groups. Loss of IgA was significantly associated with age (p=0.023) and a previous diagnosis of TB (p=0.018). CONCLUSIONS: Similar antibody response kinetics and neutralization potency in HIV negative and PLWH on stable ART in an African setting suggests that COVID-19 natural infections may confer comparable antibody immunity in these groups. This provides hope that COVID-19 vaccines will be effective in PLWH on stable ART.

3.
Nature ; 602(7898): 654-656, 2022 02.
Article in English | MEDLINE | ID: covidwho-1616992

ABSTRACT

The emergence of the SARS-CoV-2 variant of concern Omicron (Pango lineage B.1.1.529), first identified in Botswana and South Africa, may compromise vaccine effectiveness and lead to re-infections1. Here we investigated Omicron escape from neutralization by antibodies from South African individuals vaccinated with Pfizer BNT162b2. We used blood samples taken soon after vaccination from individuals who were vaccinated and previously infected with SARS-CoV-2 or vaccinated with no evidence of previous infection. We isolated and sequence-confirmed live Omicron virus from an infected person and observed that Omicron requires the angiotensin-converting enzyme 2 (ACE2) receptor to infect cells. We compared plasma neutralization of Omicron relative to an ancestral SARS-CoV-2 strain and found that neutralization of ancestral virus was much higher in infected and vaccinated individuals compared with the vaccinated-only participants. However, both groups showed a 22-fold reduction in vaccine-elicited neutralization by the Omicron variant. Participants who were vaccinated and had previously been infected exhibited residual neutralization of Omicron similar to the level of neutralization of the ancestral virus observed in the vaccination-only group. These data support the notion that reasonable protection against Omicron may be maintained using vaccination approaches.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Immune Evasion/immunology , Neutralization Tests , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cell Line , Chlorocebus aethiops , Humans , Mutation , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
4.
Clin Infect Dis ; 2021 Sep 02.
Article in English | MEDLINE | ID: covidwho-1393221

ABSTRACT

BACKGROUND: There is limited understanding of SARS-CoV-2 pathogenesis in African populations with a high burden of infectious disease comorbidities such as HIV. The kinetics, magnitude and duration of virus-specific antibodies and the underlying B cell responses in people living with HIV (PLWH) in sub-Saharan Africa have not been fully characterized. METHODS: We longitudinally followed SARS-CoV-2 infected individuals in Durban, KwaZulu-Natal, South Africa and characterized SARS-CoV-2 receptor binding domain-specific IgM, IgG and IgA antibodies weekly for a month, and then at 3 months post diagnosis. 7/30 (41.7%) were PLWH, 83% (25/30) of which were on ART and with full HIV suppression. Potency of convalescent plasma neutralization was determined using a live virus neutralization assay and antibody secreting cell population frequencies were determined by flow cytometry. RESULTS: Similar seroconversion rates, time to peak antibody titer, peak magnitude and durability of anti-SARS-CoV-2 IgM, IgG, IgA, were observed in HIV uninfected and PLWH with complete HIV suppression on ART. In addition, similar neutralization potency against an isolate of SARS-CoV-2, circulating at the time of sampling in the first wave of SARS-CoV-2 infections in South Africa was observed in both groups. Loss of IgA was significantly associated with age (p=0.023) and a previous diagnosis of TB (p=0.018). CONCLUSIONS: Similar antibody response kinetics and neutralization potency in HIV negative and PLWH on stable ART in an African setting suggests that COVID-19 natural infections may confer comparable antibody immunity in these groups. This provides hope that COVID-19 vaccines will be effective in PLWH on stable ART.

5.
Nature ; 593(7857): 142-146, 2021 05.
Article in English | MEDLINE | ID: covidwho-1155700

ABSTRACT

SARS-CoV-2 variants of concern (VOC) have arisen independently at multiple locations1,2 and may reduce the efficacy of current vaccines that target the spike glycoprotein of SARS-CoV-23. Here, using a live-virus neutralization assay, we compared the neutralization of a non-VOC variant with the 501Y.V2 VOC (also known as B.1.351) using plasma collected from adults who were hospitalized with COVID-19 during the two waves of infection in South Africa, the second wave of which was dominated by infections with the 501Y.V2 variant. Sequencing demonstrated that infections of plasma donors from the first wave were with viruses that did not contain the mutations associated with 501Y.V2, except for one infection that contained the E484K substitution in the receptor-binding domain. The 501Y.V2 virus variant was effectively neutralized by plasma from individuals who were infected during the second wave. The first-wave virus variant was effectively neutralized by plasma from first-wave infections. However, the 501Y.V2 variant was poorly cross-neutralized by plasma from individuals with first-wave infections; the efficacy was reduced by 15.1-fold relative to neutralization of 501Y.V2 by plasma from individuals infected in the second wave. By contrast, cross-neutralization of first-wave virus variants using plasma from individuals with second-wave infections was more effective, showing only a 2.3-fold decrease relative to neutralization of first-wave virus variants by plasma from individuals infected in the first wave. Although we tested only one plasma sample from an individual infected with a SARS-CoV-2 variant with only the E484K substitution, this plasma sample potently neutralized both variants. The observed effective neutralization of first-wave virus by plasma from individuals infected with 501Y.V2 provides preliminary evidence that vaccines based on VOC sequences could retain activity against other circulating SARS-CoV-2 lineages.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/therapy , COVID-19/virology , Immune Evasion/immunology , Mutation , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19/epidemiology , Cell Line , Chlorocebus aethiops , Humans , Immune Evasion/genetics , Immunization, Passive , Neutralization Tests , SARS-CoV-2/genetics , South Africa/epidemiology , Time Factors , Vero Cells
6.
N Engl J Med ; 384(20): 1885-1898, 2021 05 20.
Article in English | MEDLINE | ID: covidwho-1135713

ABSTRACT

BACKGROUND: Assessment of the safety and efficacy of vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in different populations is essential, as is investigation of the efficacy of the vaccines against emerging SARS-CoV-2 variants of concern, including the B.1.351 (501Y.V2) variant first identified in South Africa. METHODS: We conducted a multicenter, double-blind, randomized, controlled trial to assess the safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) in people not infected with the human immunodeficiency virus (HIV) in South Africa. Participants 18 to less than 65 years of age were assigned in a 1:1 ratio to receive two doses of vaccine containing 5×1010 viral particles or placebo (0.9% sodium chloride solution) 21 to 35 days apart. Serum samples obtained from 25 participants after the second dose were tested by pseudovirus and live-virus neutralization assays against the original D614G virus and the B.1.351 variant. The primary end points were safety and efficacy of the vaccine against laboratory-confirmed symptomatic coronavirus 2019 illness (Covid-19) more than 14 days after the second dose. RESULTS: Between June 24 and November 9, 2020, we enrolled 2026 HIV-negative adults (median age, 30 years); 1010 and 1011 participants received at least one dose of placebo or vaccine, respectively. Both the pseudovirus and the live-virus neutralization assays showed greater resistance to the B.1.351 variant in serum samples obtained from vaccine recipients than in samples from placebo recipients. In the primary end-point analysis, mild-to-moderate Covid-19 developed in 23 of 717 placebo recipients (3.2%) and in 19 of 750 vaccine recipients (2.5%), for an efficacy of 21.9% (95% confidence interval [CI], -49.9 to 59.8). Among the 42 participants with Covid-19, 39 cases (95.1% of 41 with sequencing data) were caused by the B.1.351 variant; vaccine efficacy against this variant, analyzed as a secondary end point, was 10.4% (95% CI, -76.8 to 54.8). The incidence of serious adverse events was balanced between the vaccine and placebo groups. CONCLUSIONS: A two-dose regimen of the ChAdOx1 nCoV-19 vaccine did not show protection against mild-to-moderate Covid-19 due to the B.1.351 variant. (Funded by the Bill and Melinda Gates Foundation and others; ClinicalTrials.gov number, NCT04444674; Pan African Clinical Trials Registry number, PACTR202006922165132).


Subject(s)
Antibodies, Neutralizing/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2 , Adenoviridae , Adolescent , Adult , Antibodies, Neutralizing/physiology , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Serological Testing , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Double-Blind Method , Humans , Middle Aged , South Africa , T-Lymphocytes/physiology , Treatment Failure , Vaccine Potency , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL