Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.12.01.518541

ABSTRACT

Human Angiotensin-Converting Enzyme 2 (hACE2) is the major receptor enabling host cell invasion by SARS-CoV-2 via interaction with Spike glycoprotein. The murine ACE2 ortholog does not interact efficiently with SARS-CoV-2 Spike and therefore the conventional laboratory mouse strains are not permissive to SARS-CoV-2 replication. Here, we generated new hACE2 transgenic mice, which harbor the hACE2 gene under the human keratin 18 promoter, in C57BL/6 "HHD-DR1" background. HHD-DR1 mice are fully devoid of murine Major Histocompatibility Complex (MHC) molecules of class-I and -II and express only MHC molecules from Human Leukocyte Antigen (HLA) HLA 02.01, DRA01.01, DRB1.01.01 alleles, widely expressed in human populations. We selected three transgenic strains, with various hACE2 mRNA expression levels and distinctive profiles of lung and/or brain permissiveness to SARS-CoV-2 replication. Compared to the previously available B6.K18-ACE22Prlmn/JAX mice, which have limited permissiveness to SARS-CoV-2 Omicron replication, these three new hACE2 transgenic strains display higher levels of hACE2 mRNA expression, associated with high permissiveness to the replication of SARS-CoV-2 Omicron sub-variants. As a first application, one of these MHC- and ACE2-humanized strains was successfully used to show the efficacy of a lentiviral vector-based COVID-19 vaccine candidate.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Pemphigus, Benign Familial
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.30.478159

ABSTRACT

As the COVID-19 pandemic continues and new SARS-CoV-2 variants of concern emerge, the adaptive immunity initially induced by the first-generation COVID-19 vaccines wains and needs to be strengthened and broadened in specificity. Vaccination by the nasal route induces mucosal humoral and cellular immunity at the entry point of SARS-CoV-2 into the host organism and has been shown to be the most effective for reducing viral transmission. The lentiviral vaccination vector (LV) is particularly suitable for this route of immunization because it is non-cytopathic, non-replicative and scarcely inflammatory. Here, to set up an optimized cross-protective intranasal booster against COVID-19, we generated an LV encoding stabilized Spike of SARS-CoV-2 Beta variant (LV::SBeta-2P). mRNA vaccine primed and -boosted mice, with waning primary humoral immunity at 4 months post-vaccination, were boosted intranasally with LV::SBeta-2P. Strong boost effect was detected on cross-sero-neutralizing activity and systemic T-cell immunity. In addition, mucosal anti-Spike IgG and IgA and lung resident B cells, effector memory and resident T cells were productively induced, correlating with complete pulmonary protection against the SARS-CoV-2 Delta variant, demonstrating the suitability of the LV::SBeta-2P vaccine candidate as an intranasal booster against COVID-19.


Subject(s)
COVID-19 , Encephalomyelitis, Acute Disseminated
3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-415309.v1

ABSTRACT

COVID-19 vaccines already in use or in clinical development may have safety concerns, limited immunogenicity in high-risk groups or reduced efficacy against emerging SARS-CoV-2 variants. In addition, although the neurotropism of SARS-CoV-2 is well established, the vaccine strategies currently developed have not taken into account the protection of the central nervous system. Here, we generated a transgenic mouse strain expressing the human Angiotensin Converting Enzyme 2, with unprecedented brain as well as lung permissibility to SARS-CoV-2 replication. Using this stringent transgenic model, we demonstrated that a non-integrative lentiviral vector, encoding for the spike glycoprotein of the ancestral Wuhan SARS-CoV-2, used in intramuscular prime and intranasal boost elicits sterilizing protection of lung and brain against both the Wuhan and the most genetically distant Manaus P.1 SARS-CoV-2 variants. Beyond the induction of strong neutralizing antibodies, the mechanism underlying this broad protection spectrum involves a robust protective spike-specific CD8+ T-cell immunity, unaffected by the recent mutations accumulated in the emerging SARS-CoV-2 variants.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL