Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add filters

Year range
1.
Cells ; 11(1)2021 12 24.
Article in English | MEDLINE | ID: covidwho-1580994

ABSTRACT

The ongoing pandemic of coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), needs better treatment options both at antiviral and anti-inflammatory levels. It has been demonstrated that the aminothiol cysteamine, an already human applied drug, and its disulfide product of oxidation, cystamine, have anti-infective properties targeting viruses, bacteria, and parasites. To determine whether these compounds exert antiviral effects against SARS-CoV-2, we used different in vitro viral infected cell-based assays. Moreover, since cysteamine has also immune-modulatory activity, we investigated its ability to modulate SARS-CoV-2-specific immune response in vitro in blood samples from COVID-19 patients. We found that cysteamine and cystamine decreased SARS-CoV-2-induced cytopathic effects (CPE) in Vero E6 cells. Interestingly, the antiviral action was independent of the treatment time respect to SARS-CoV-2 infection. Moreover, cysteamine and cystamine significantly decreased viral production in Vero E6 and Calu-3 cells. Finally, cysteamine and cystamine have an anti-inflammatory effect, as they significantly decrease the SARS-CoV-2 specific IFN-γ production in vitro in blood samples from COVID-19 patients. Overall, our findings suggest that cysteamine and cystamine exert direct antiviral actions against SARS-CoV-2 and have in vitro immunomodulatory effects, thus providing a rational to test these compounds as a novel therapy for COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Cysteamine/pharmacology , Drug Repositioning/methods , SARS-CoV-2/drug effects , Aged , Animals , COVID-19/virology , Cell Line, Tumor , Chlorocebus aethiops , Cystamine/pharmacology , Cystine Depleting Agents/pharmacology , Female , Humans , Male , Middle Aged , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Vero Cells , Virus Replication/drug effects , Virus Replication/genetics
2.
Int J Infect Dis ; 2021 Mar 10.
Article in English | MEDLINE | ID: covidwho-1575296

ABSTRACT

OBJECTIVES: The interaction of COVID-19 and tuberculosis (TB) are still poor characterized. Here we evaluated the immune response specific for Micobacterium tuberculosis (Mtb) and SARS-CoV-2 using a whole-blood-based assay-platform in COVID-19 patients either with TB or latent TB infection (LTBI). METHODS: We evaluated IFN-γ level in plasma from whole-blood stimulated with Mtb antigens in the Quantiferon-Plus format or with peptides derived from SARS-CoV-2 spike protein, Wuhan-Hu-1 isolate (CD4-S). RESULTS: We consecutively enrolled 63 COVID-19, 10 TB-COVID-19 and 11 LTBI-COVID-19 patients. IFN-γ response to Mtb-antigens was significantly associated to TB status and therefore it was higher in TB-COVID-19 and LTBI-COVID-19 patients compared to COVID-19 patients (p ≤ 0.0007). Positive responses against CD4-S were found in 35/63 COVID-19 patients, 7/11 LTBI-COVID-19 and only 2/10 TB-COVID-19 patients. Interestingly, the responders in the TB-COVID-19 group were less compared to COVID-19 and LTBI-COVID-19 groups (p = 0.037 and 0.044, respectively). Moreover, TB-COVID-19 patients showed the lowest quantitative IFN-γ response to CD4-S compared to COVID-19-patients (p = 0.0336) and LTBI-COVID-19 patients (p = 0.0178). CONCLUSIONS: Our data demonstrate that COVID-19 patients either TB or LTBI have a low ability to build an immune response to SARS-CoV-2 while retaining the ability to respond to Mtb-specific antigens.

3.
J Transl Med ; 19(1): 501, 2021 12 07.
Article in English | MEDLINE | ID: covidwho-1560461

ABSTRACT

BACKGROUND: Omics data, driven by rapid advances in laboratory techniques, have been generated very quickly during the COVID-19 pandemic. Our aim is to use omics data to highlight the involvement of specific pathways, as well as that of cell types and organs, in the pathophysiology of COVID-19, and to highlight their links with clinical phenotypes of SARS-CoV-2 infection. METHODS: The analysis was based on the domain model, where for domain it is intended a conceptual repository, useful to summarize multiple biological pathways involved at different levels. The relevant domains considered in the analysis were: virus, pathways and phenotypes. An interdisciplinary expert working group was defined for each domain, to carry out an independent literature scoping review. RESULTS: The analysis revealed that dysregulated pathways of innate immune responses, (i.e., complement activation, inflammatory responses, neutrophil activation and degranulation, platelet degranulation) can affect COVID-19 progression and outcomes. These results are consistent with several clinical studies. CONCLUSIONS: Multi-omics approach may help to further investigate unknown aspects of the disease. However, the disease mechanisms are too complex to be explained by a single molecular signature and it is necessary to consider an integrated approach to identify hallmarks of severity.

5.
Neurology ; 2021 Nov 22.
Article in English | MEDLINE | ID: covidwho-1528702

ABSTRACT

OBJECTIVE: To evaluate the immune-specific response after the full SARS-CoV-2 vaccination of multiple sclerosis (MS) patients treated with different Disease Modifying drugs by the detection of both serological- and T-cell responses. METHODS: Health care workers (HCWs) and MS patients, having completed the two-dose schedule of an mRNA-based vaccine against SARS-CoV-2 in the last 2-4 weeks, were enrolled from two parallel prospective studies conducted in Rome, Italy, at the National Institute for Infectious diseases Spallanzani-IRCSS and San Camillo Forlanini Hospital. Serological response was evaluated by quantifying the Region-Binding-Domain (RBD) and neutralizing-antibodies. Cell-mediated response was analyzed by a whole-blood test quantifying interferon (IFN)-γ response to spike peptides. Cells responding to spike stimulation were identified by FACS analysis. RESULTS: We prospectively enrolled 186 vaccinated individuals: 78 HCWs and 108 MS patients. Twenty-eight MS patients were treated with IFN-ß, 35 with fingolimod, 20 with cladribine, and 25 with ocrelizumab. A lower anti-RBD-antibody response rate was found in patients treated with ocrelizumab (40%, p<0.0001) and fingolimod (85.7%, p=0.0023) compared to HCWs and patients treated with cladribine or IFN-ß. Anti-RBD-antibody median titer was lower in patients treated with ocrelizumab (p<0.0001), fingolimod (p<0.0001) and cladribine (p=0.010) compared to HCWs and IFN-ß-treated patients. Importantly, serum neutralizing activity was present in all the HCWs tested and only in a minority of the fingolimod-treated patients (16.6%). T-cell-specific response was detected in the majority of MS patients (62%), albeit with significantly lower IFN-γ levels compared to HCWs. The lowest frequency of T-cell response was found in fingolimod-treated patients (14.3%). T-cell-specific response correlated with lymphocyte count and anti-RBD antibody titer (rho=0.554, p<0.0001 and rho=0.255, p=0.0078 respectively). Finally, IFN-γ T-cell response was mediated by both CD4+ and CD8+ T cells. CONCLUSION: mRNA vaccines induce both humoral and cell-mediated specific immune responses against spike peptides in all HCWs and in the majority of MS patients. These results carry relevant implications for managing vaccinations suggesting to promote vaccination in all treated MS patients. CLASSIFICATION OF EVIDENCE: This study provides Class III data that COVID mRNA vaccination induces both humoral and cell-mediated specific immune responses against viral spike proteins in a majority of MS patients.

6.
Biol Sex Differ ; 12(1): 63, 2021 11 22.
Article in English | MEDLINE | ID: covidwho-1528694

ABSTRACT

BACKGROUND: Several biomarkers have been identified to predict the outcome of COVID-19 severity, but few data are available regarding sex differences in their predictive role. Aim of this study was to identify sex-specific biomarkers of severity and progression of acute respiratory distress syndrome (ARDS) in COVID-19. METHODS: Plasma levels of sex hormones (testosterone and 17ß-estradiol), sex-hormone dependent circulating molecules (ACE2 and Angiotensin1-7) and other known biomarkers for COVID-19 severity were measured in male and female COVID-19 patients at admission to hospital. The association of plasma biomarker levels with ARDS severity at admission and with the occurrence of respiratory deterioration during hospitalization was analysed in aggregated and sex disaggregated form. RESULTS: Our data show that some biomarkers could be predictive both for males and female patients and others only for one sex. Angiotensin1-7 plasma levels and neutrophil count predicted the outcome of ARDS only in females, whereas testosterone plasma levels and lymphocytes counts only in males. CONCLUSIONS: Sex is a biological variable affecting the choice of the correct biomarker that might predict worsening of COVID-19 to severe respiratory failure. The definition of sex specific biomarkers can be useful to alert patients to be safely discharged versus those who need respiratory monitoring.

7.
Liver Int ; 2021 Oct 31.
Article in English | MEDLINE | ID: covidwho-1488231

ABSTRACT

Limited data are available on risks and benefits of anti-SARS-CoV2 vaccination in solid organ transplant recipients, and weaker responses have been described. At the Italian National Institute for Infectious Diseases, 61 liver transplant recipients underwent testing to describe the dynamics of humoral and cell-mediated immune response after two doses of anti-SARS-CoV2 mRNA vaccines and compared with 51 healthy controls. Humoral response was measured by quantifying both anti-spike and neutralizing antibodies; cell-mediated response was measured by PBMC proliferation assay with IFN-γ and IL-2 production. Liver transplant recipients showed lower response rates compared with controls in both humoral and cellular arms; shorter time since transplantation and multi-drug immunosuppressive regimen containing mycophenolate mofetil were predictive of reduced response to vaccination. Specific antibody and cytokine production, though reduced, were highly correlated in transplant recipients.

9.
Br J Haematol ; 2021 Oct 14.
Article in English | MEDLINE | ID: covidwho-1467542

ABSTRACT

Patients affected by lymphoid malignancies (LM) are frequently immune-compromised, suffering increased mortality from COVID-19. This prospective study evaluated serological and T-cell responses after complete mRNA vaccination in 263 patients affected by chronic lymphocytic leukaemia, B- and T-cell lymphomas and multiple myeloma. Results were compared with those of 167 healthy subjects matched for age and sex. Overall, patient seroconversion rate was 64·6%: serological response was lower in those receiving anti-cancer treatments in the 12 months before vaccination: 55% vs 81·9% (P < 0·001). Anti-CD20 antibody plus chemotherapy treatment was associated with the lowest seroconversion rate: 17·6% vs. 71·2% (P < 0·001). In the multivariate analysis conducted in the subgroup of patients on active treatment, independent predictors for seroconversion were: anti-CD20 treatment (P < 0·001), aggressive B-cell lymphoma diagnosis (P = 0·002), and immunoglobulin M levels <40 mg/dl (P = 0·030). The T-cell response was evaluated in 99 patients and detected in 85 of them (86%). Of note, 74% of seronegative patients had a T-cell response, but both cellular and humoral responses were absent in 13·1% of cases. Our findings raise some concerns about the protection that patients with LM, particularly those receiving anti-CD20 antibodies, may gain from vaccination. These patients should strictly maintain all the protective measures.

10.
Front Immunol ; 12: 740249, 2021.
Article in English | MEDLINE | ID: covidwho-1448730

ABSTRACT

Objective: To assess in rheumatoid arthritis (RA) patients, treated with different immunosuppressive therapies, the induction of SARS-CoV-2-specific immune response after vaccination in terms of anti-region-binding-domain (RBD)-antibody- and T-cell-specific responses against spike, and the vaccine safety in terms of clinical impact on disease activity. Methods: Health care workers (HCWs) and RA patients, having completed the BNT162b2-mRNA vaccination in the last 2 weeks, were enrolled. Serological response was evaluated by quantifying anti-RBD antibodies, while the cell-mediated response was evaluated by a whole-blood test quantifying the interferon (IFN)-γ-response to spike peptides. FACS analysis was performed to identify the cells responding to spike stimulation. RA disease activity was evaluated by clinical examination through the DAS28crp, and local and/or systemic clinical adverse events were registered. In RA patients, the ongoing therapeutic regimen was modified during the vaccination period according to the American College of Rheumatology indications. Results: We prospectively enrolled 167 HCWs and 35 RA patients. Anti-RBD-antibodies were detected in almost all patients (34/35, 97%), although the titer was significantly reduced in patients under CTLA-4-inhibitors (median: 465 BAU/mL, IQR: 103-1189, p<0.001) or IL-6-inhibitors (median: 492 BAU/mL, IQR: 161-1007, p<0.001) compared to HCWs (median: 2351 BAU/mL, IQR: 1389-3748). T-cell-specific response scored positive in most of RA patients [24/35, (69%)] with significantly lower IFN-γ levels in patients under biological therapy such as IL-6-inhibitors (median: 33.2 pg/mL, IQR: 6.1-73.9, p<0.001), CTLA-4-inhibitors (median: 10.9 pg/mL, IQR: 3.7-36.7, p<0.001), and TNF-α-inhibitors (median: 89.6 pg/mL, IQR: 17.8-224, p=0.002) compared to HCWs (median: 343 pg/mL, IQR: 188-756). A significant correlation between the anti-RBD-antibody titer and spike-IFN-γ-specific T-cell response was found in RA patients (rho=0.432, p=0.009). IFN-γ T-cell response was mediated by CD4+ and CD8+ T cells. Finally, no significant increase in disease activity was found in RA patients following vaccination. Conclusion: This study showed for the first time that antibody-specific and whole-blood spike-specific T-cell responses induced by the COVID-19 mRNA-vaccine were present in the majority of RA patients, who underwent a strategy of temporary suspension of immunosuppressive treatment during vaccine administration. However, the magnitude of specific responses was dependent on the immunosuppressive therapy administered. In RA patients, BNT162b2 vaccine was safe and disease activity remained stable.


Subject(s)
Antibodies, Viral/immunology , Arthritis, Rheumatoid/therapy , COVID-19 Vaccines/immunology , Immunotherapy/adverse effects , T-Lymphocytes/immunology , Aged , Arthritis, Rheumatoid/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , COVID-19/prevention & control , Female , Humans , Interferon-gamma/immunology , Lymphocyte Count , Male , Middle Aged , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/cytology , Vaccines, Synthetic/immunology
11.
Cells ; 10(9)2021 08 31.
Article in English | MEDLINE | ID: covidwho-1390541

ABSTRACT

COVID-19 presents with a wide range of clinical neurological manifestations. It has been recognized that SARS-CoV-2 infection affects both the central and peripheral nervous system, leading to smell and taste disturbances; acute ischemic and hemorrhagic cerebrovascular disease; encephalopathies and seizures; and causes most surviving patients to have long lasting neurological symptoms. Despite this, typical neuropathological features associated with the infection have still not been identified. Studies of post-mortem examinations of the cerebral cortex are obtained with difficulty due to laboratory safety concerns. In addition, they represent cases with different neurological symptoms, age or comorbidities, thus a larger number of brain autoptic data from multiple institutions would be crucial. Histopathological findings described here are aimed to increase the current knowledge on neuropathology of COVID-19 patients. We report post-mortem neuropathological findings of ten COVID-19 patients. A wide range of neuropathological lesions were seen. The cerebral cortex of all patients showed vascular changes, hyperemia of the meninges and perivascular inflammation in the cerebral parenchyma with hypoxic neuronal injury. Perivascular lymphocytic inflammation of predominantly CD8-positive T cells mixed with CD68-positive macrophages, targeting the disrupted vascular wall in the cerebral cortex, cerebellum and pons were seen. Our findings support recent reports highlighting a role of microvascular injury in COVID-19 neurological manifestations.


Subject(s)
COVID-19/pathology , Cerebral Cortex/pathology , Aged , Aged, 80 and over , Autopsy , Brain/pathology , Brain/virology , Brain Diseases/pathology , Brain Diseases/virology , CD8-Positive T-Lymphocytes/pathology , Cerebral Cortex/virology , Female , Humans , Inflammation , Macrophages/pathology , Male , Microvessels/pathology , Microvessels/virology , Middle Aged , Nervous System Diseases/pathology , Nervous System Diseases/virology , SARS-CoV-2/pathogenicity
12.
Front Immunol ; 12: 704110, 2021.
Article in English | MEDLINE | ID: covidwho-1376699

ABSTRACT

Patients diagnosed with malignancy, neurological and immunological disorders, i.e., fragile patients, have been excluded from COVID-19 vaccine trials. However, this population may present immune response abnormalities, and relative reduced vaccine responsiveness. Here we review the limited current evidence on the immune responses to vaccination of patients with different underlying diseases. To address open questions we present the VAX4FRAIL study aimed at assessing immune responses to vaccination in a large transdisease cohort of patients with cancer, neurological and rheumatological diseases.


Subject(s)
COVID-19 Vaccines/administration & dosage , Adult , COVID-19 Vaccines/immunology , Clinical Protocols , Humans , Immune System Diseases/immunology , Immunocompromised Host/immunology , Neoplasms/immunology , Nervous System Diseases/immunology , Patient Selection , Prospective Studies
13.
Cells ; 10(8)2021 08 17.
Article in English | MEDLINE | ID: covidwho-1360725

ABSTRACT

Massive platelet activation and thrombotic events characterize severe COVID-19, highlighting their critical role in SARS-CoV-2-induced immunopathology. Since there is a well-described expansion of myeloid-derived suppressor cells (MDSC) in severe COVID-19, we evaluated their possible role in platelet activation during SARS-CoV-2 infection. During COVID-19, a lower plasmatic L-arginine level was observed compared to healthy donors, which correlated with MDSC frequency. Additionally, activated GPIIb/IIIa complex (PAC-1) expression was higher on platelets from severe COVID-19 patients compared to healthy controls and inversely correlated with L-arginine plasmatic concentration. Notably, MDSC were able to induce PAC-1 expression in vitro by reducing L-arginine concentration, indicating a direct role of PMN-MDSC in platelet activation. Accordingly, we found a positive correlation between ex vivo platelet PAC-1 expression and PMN-MDSC frequency. Overall, our data demonstrate the involvement of PMN-MDSC in triggering platelet activation during COVID-19, highlighting a novel role of MDSC in driving COVID-19 pathogenesis.


Subject(s)
Arginine/immunology , COVID-19/immunology , Myeloid-Derived Suppressor Cells/immunology , Platelet Activation , Thrombosis/etiology , Adult , Aged , Aged, 80 and over , Arginine/physiology , COVID-19/complications , COVID-19/physiopathology , Female , Humans , Male , Middle Aged , Myeloid-Derived Suppressor Cells/physiology , Young Adult
14.
Cell Death Dis ; 12(8): 788, 2021 08 12.
Article in English | MEDLINE | ID: covidwho-1356553

ABSTRACT

In the last months, many studies have clearly described several mechanisms of SARS-CoV-2 infection at cell and tissue level, but the mechanisms of interaction between host and SARS-CoV-2, determining the grade of COVID-19 severity, are still unknown. We provide a network analysis on protein-protein interactions (PPI) between viral and host proteins to better identify host biological responses, induced by both whole proteome of SARS-CoV-2 and specific viral proteins. A host-virus interactome was inferred, applying an explorative algorithm (Random Walk with Restart, RWR) triggered by 28 proteins of SARS-CoV-2. The analysis of PPI allowed to estimate the distribution of SARS-CoV-2 proteins in the host cell. Interactome built around one single viral protein allowed to define a different response, underlining as ORF8 and ORF3a modulated cardiovascular diseases and pro-inflammatory pathways, respectively. Finally, the network-based approach highlighted a possible direct action of ORF3a and NS7b to enhancing Bradykinin Storm. This network-based representation of SARS-CoV-2 infection could be a framework for pathogenic evaluation of specific clinical outcomes. We identified possible host responses induced by specific proteins of SARS-CoV-2, underlining the important role of specific viral accessory proteins in pathogenic phenotypes of severe COVID-19 patients.


Subject(s)
COVID-19/metabolism , COVID-19/virology , SARS-CoV-2/metabolism , Host Microbial Interactions , Immunity/immunology , Protein Interaction Maps/physiology , Proteome , Proteomics/methods , SARS-CoV-2/pathogenicity , Severity of Illness Index , Viral Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism
15.
Int J Infect Dis ; 108: 244-251, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1351698

ABSTRACT

OBJECTIVES: To investigate the association between sex hormones and the severity of coronavirus disease 2019 (COVID-19). Furthermore, associations between sex hormones and systemic inflammation markers, viral shedding and length of hospital stay were studied. DESIGN AND METHODS: This case-control study included a total of 48 male patients with COVID-19 admitted to an Italian reference hospital. The 24 cases were patients with PaO2/FiO2 <250 mmHg and who needed ventilatory support during hospitalization (severe COVID-19). The 24 controls were selected in a 1:1 ratio, matched by age, from patients who maintained PaO2/FiO2 >300 mmHg at all times and who may have required low-flow oxygen supplementation during hospitalization (mild COVID-19). For each group, sex hormones were evaluated on hospital admission. RESULTS: Patients with severe COVID-19 (cases) had a significantly lower testosterone level compared with patients with mild COVID-19 (controls). Median total testosterone (TT) was 1.4 ng/mL in cases and 3.5 ng/mL in controls (P = 0.005); median bioavailable testosterone (BioT) was 0.49 and 1.21 in cases and controls, respectively (P = 0.008); and median calculated free testosterone (cFT) was 0.029 ng/mL and 0.058 ng/mL in cases and controls, respectively (P = 0.015). Low TT, low cFT and low BioT were correlated with hyperinflammatory syndrome (P = 0.018, P = 0.048 and P = 0.020, respectively) and associated with longer length of hospital stay (P = 0.052, P = 0.041 and P = 0.023, respectively). No association was found between sex hormone level and duration of viral shedding, or between sex hormone level and mortality rate. CONCLUSIONS: A low level of testosterone was found to be a marker of clinical severity of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Biomarkers , Case-Control Studies , Humans , Male , Testosterone , Virulence Factors
16.
J Clin Med ; 10(15)2021 Jul 28.
Article in English | MEDLINE | ID: covidwho-1335120

ABSTRACT

BACKGROUND: The benefits and timing of percutaneous dilatational tracheostomy (PDT) in Intensive Care Unit (ICU) COVID-19 patients are still controversial. PDT is considered a high-risk procedure for the transmission of SARS-CoV-2 to healthcare workers (HCWs). The present study analyzed the optimal timing of PDT, the clinical outcomes of patients undergoing PDT, and the safety of HCWs performing PDT. METHODS: Of the 133 COVID-19 patients who underwent PDT in our ICU from 1 April 2020 to 31 March 2021, 13 patients were excluded, and 120 patients were enrolled. A trained medical team was dedicated to the PDT procedure. Demographic, clinical history, and outcome data were collected. Patients who underwent PDT were stratified into two groups: an early group (PDT ≤ 12 days after orotracheal intubation (OTI) and a late group (>12 days after OTI). An HCW surveillance program was also performed. RESULTS: The early group included 61 patients and the late group included 59 patients. The early group patients had a shorter ICU length of stay and fewer days of mechanical ventilation than the late group (p < 0.001). On day 7 after tracheostomy, early group patients required fewer intravenous anesthetic drugs and experienced an improvement of the ventilation parameters PaO2/FiO2 ratio, PEEP, and FiO2 (p < 0.001). No difference in the case fatality ratio between the two groups was observed. No SARS-CoV-2 infections were reported in the HCWs performing the PDTs. CONCLUSIONS: PDT was safe and effective for COVID-19 patients since it improved respiratory support parameters, reduced ICU length of stay and duration of mechanical ventilation, and optimized the weaning process. The procedure was safe for all HCWs involved in the dedicated medical team. The development of standardized early PDT protocols should be implemented, and PDT could be considered a first-line approach in ICU COVID-19 patients requiring prolonged mechanical ventilation.

17.
J Clin Med ; 10(15)2021 Jul 22.
Article in English | MEDLINE | ID: covidwho-1325713

ABSTRACT

INTRODUCTION: The use of steroid therapy in patients within the context of SARS-CoV-2 infection is still a matter of debate. This study aimed to evaluate if potential steroid benefits could be predicted by the ratio of arterial oxygen partial pressure (PaO2 in mmHg) to fractional inspired oxygen (FiO2) (P/F) in COVID-19 patients at admission. MATERIALS AND METHODS: Medical records were retrospectively collected from all adult patients admitted because of COVID-19 from 29 January to 31 July 2020. The association of steroid therapy with 28-day all-cause mortality outcome was analysed in a multivariable logistic regression model adjusted for confounding factors. RESULTS: Overall, 511 patients were analysed, of which 39.1% underwent steroid therapy. Steroid treated patients were mostly male, older, and more frequently treated with antiviral drugs and aminoquinolines; the most common comorbidities were hypertension, followed by cardiovascular disease. Overall, 51 patients died within 28-days, and overall 28-days mortality was 19.5% in the cohort of patients exposed to steroids versus 3.9% mortality in unexposed patients (p < 0.001). Steroid therapy on patients with P/F ratio of 235 mmHg or higher at admission can be considered as detrimental, with an 8% increased probability of death. CONCLUSIONS: Steroid therapy is associated with increased 28-day mortality in COVID-19 in patients with mild or no ARDS.

18.
Viruses ; 12(10)2020 10 20.
Article in English | MEDLINE | ID: covidwho-1305819

ABSTRACT

BACKGROUND: RT-PCR on nasopharyngeal (NPS)/oropharyngeal swabs is the gold standard for diagnosis of SARS-CoV-2 infection and viral load monitoring. Oral fluid (OF) is an alternate clinical sample, easy and safer to collect and could be useful for COVID-19 diagnosis, monitoring viral load and shedding. METHODS: Optimal assay conditions and analytical sensitivity were established for the commercial Simplexa™ COVID-19 Direct assay adapted to OF matrix. The assay was used to test 337 OF and NPS specimens collected in parallel from 164 hospitalized patients; 50 bronchoalveolar lavage (BAL) specimens from a subgroup of severe COVID-19 cases were also analysed. RESULTS: Using Simplexa™ COVID-19 Direct on OF matrix, 100% analytical detection down to 1 TCID50/mL (corresponding to 4 × 103 copies (cp)/mL) was observed. No crossreaction with other viruses transmitted through the respiratory toute was observed. Parallel testing of 337 OF and NPS samples showed highly concordant results (κ = 0.831; 95 % CI = 0.771-0.891), and high correlation of Ct values (r = 0.921; p < 0.0001). High concordance and elevated correlation was observed also between OF and BAL. Prolonged viral RNA shedding was observed up to 100 days from symptoms onset (DSO), with 32% and 29% positivity observed in OF and NPS samples, respectively, collected between 60 and 100 DSO. CONCLUSIONS: Simplexa™ COVID-19 Direct assays on OF have high sensitivity and specificity to detect SARS-CoV-2 RNA and provide an alternative to NPS for diagnosis and monitoring SARS-CoV-2 shedding.


Subject(s)
Betacoronavirus/physiology , Clinical Laboratory Techniques/methods , Coronavirus Infections/virology , Pneumonia, Viral/virology , Virus Shedding/physiology , Adult , Aged , Betacoronavirus/genetics , Body Fluids/virology , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Coronavirus Infections/diagnosis , Diagnostic Tests, Routine , Female , Humans , Male , Middle Aged , Molecular Diagnostic Techniques/methods , Pandemics , Pharynx/virology , Pneumonia, Viral/diagnosis , RNA, Viral/analysis , SARS-CoV-2 , Sensitivity and Specificity , Specimen Handling , Viral Load
19.
Viruses ; 13(7)2021 07 06.
Article in English | MEDLINE | ID: covidwho-1302499

ABSTRACT

Complex systems are inherently multilevel and multiscale systems. The infectious disease system is considered a complex system resulting from the interaction between three sub-systems (host, pathogen, and environment) organized into a hierarchical structure, ranging from the cellular to the macro-ecosystem level, with multiscales. Therefore, to describe infectious disease phenomena that change through time and space and at different scales, we built a model framework where infectious disease must be considered the set of biological responses of human hosts to pathogens, with biological pathways shared with other pathologies in an ecological interaction context. In this paper, we aimed to design a framework for building a disease model for COVID-19 based on current literature evidence. The model was set up by identifying the molecular pathophysiology related to the COVID-19 phenotypes, collecting the mechanistic knowledge scattered across scientific literature and bioinformatic databases, and integrating it using a logical/conceptual model systems biology. The model framework building process began from the results of a domain-based literature review regarding a multiomics approach to COVID-19. This evidence allowed us to define a framework of COVID-19 conceptual model and to report all concepts in a multilevel and multiscale structure. The same interdisciplinary working groups that carried out the scoping review were involved. The conclusive result is a conceptual method to design multiscale models of infectious diseases. The methodology, applied in this paper, is a set of partially ordered research and development activities that result in a COVID-19 multiscale model.

20.
Int J Infect Dis ; 107: 247-250, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1300800

ABSTRACT

Prolonged B-cell depletion due to anti-CD20 monoclonal antibody (mAbs) therapy impairs the adaptive immune response, causing severe manifestations during COronaVIrus Disease-2019 (COVID-19). The cases of two patients under anti-CD20 therapy who experienced prolonged and severe COVID-19 successfully treated with mAbs against Severe Acute Respiratory Syndrome-CoV-2 spike proteins are reported.


Subject(s)
Antibodies, Monoclonal/therapeutic use , B-Lymphocytes/immunology , COVID-19/complications , Lymphocyte Depletion/adverse effects , SARS-CoV-2 , Antigens, CD20/immunology , COVID-19/drug therapy , Female , Humans , Male , Middle Aged , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...