Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Soc Work Public Health ; 37(7): 609-630, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-1839973

ABSTRACT

The COVID-19 pandemic, was first identified in Wuhan, China, has had a drastic effect on the world economy and compelled governments to enforce lockdown in territories. However, lockdown is destroying the world economy badly as well as the physical and mental health of people. Therefore, governments must develop Lockdown Relaxation Strategies (LRS) to overcome the negative consequences of lockdown in Pakistan. Identifying LRS is important for public health and economic restoration. Therefore, this work is an initial attempt to develop LRS in a developing country - Pakistan, and prioritize LRS through a novel ISM-MICMAC approach. By taking response from experts, results show that implementation of smart lockdowns in affected areas, meeting minimum criteria of public health standards, limited operations of public transportation are the most important strategies. Results provide a strategic guideline for governments to take necessary measures and allocate resources appropriately.


Subject(s)
COVID-19 , Communicable Disease Control , Humans , Pakistan , Pandemics/prevention & control , Policy
2.
Molecules ; 27(1)2021 Dec 28.
Article in English | MEDLINE | ID: covidwho-1580565

ABSTRACT

Baricitinib (BTB) is an orally administered Janus kinase inhibitor, therapeutically used for the treatment of rheumatoid arthritis. Recently it has also been approved for the treatment of COVID-19 infection. In this study, four different BTB-loaded lipids (stearin)-polymer (Poly(d,l-lactide-co-glycolide)) hybrid nanoparticles (B-PLN1 to B-PLN4) were prepared by the single-step nanoprecipitation method. Next, they were characterised in terms of physicochemical properties such as particle size, zeta potential (ζP), polydispersity index (PDI), entrapment efficiency (EE) and drug loading (DL). Based on preliminary evaluation, the B-PLN4 was regarded as the optimised formulation with particle size (272 ± 7.6 nm), PDI (0.225), ζP (-36.5 ± 3.1 mV), %EE (71.6 ± 1.5%) and %DL (2.87 ± 0.42%). This formulation (B-PLN4) was further assessed concerning morphology, in vitro release, and in vivo pharmacokinetic studies in rats. The in vitro release profile exhibited a sustained release pattern well-fitted by the Korsmeyer-Peppas kinetic model (R2 = 0.879). The in vivo pharmacokinetic data showed an enhancement (2.92 times more) in bioavailability in comparison to the normal suspension of pure BTB. These data concluded that the formulated lipid-polymer hybrid nanoparticles could be a promising drug delivery option to enhance the bioavailability of BTB. Overall, this study provides a scientific basis for future studies on the entrapment efficiency of lipid-polymer hybrid systems as promising carriers for overcoming pharmacokinetic limitations.


Subject(s)
Azetidines/pharmacokinetics , Drug Carriers/chemistry , Drug Liberation , Liposomes/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Purines/pharmacokinetics , Pyrazoles/pharmacokinetics , Sulfonamides/pharmacokinetics , Administration, Oral , Animals , Azetidines/administration & dosage , Azetidines/chemistry , Biological Availability , Male , Purines/administration & dosage , Purines/chemistry , Pyrazoles/administration & dosage , Pyrazoles/chemistry , Rats , Rats, Wistar , Sulfonamides/administration & dosage , Sulfonamides/chemistry
3.
Pharmaceuticals (Basel) ; 14(5)2021 Apr 26.
Article in English | MEDLINE | ID: covidwho-1244094

ABSTRACT

In the current study, the effect of poloxamer 188 on the complexation efficiency and dissolution of arbidol hydrochloride (ADL), a broad-spectrum antiviral agent, with ß-cyclodextrin (ß-CD) was investigated. Phase solubility studies confirmed a stoichiometry of a 1:1 ratio for both ADL:ß-CD and ADL/ß-CD with a 1% poloxamer 188 system with an AL type of phase solubility curve. The stability constants (K1:1) calculated from the AL type diagram were 550 M-1 and 2134 M-1 for AD:ß-CD and ADL/ß-CD with 1% poloxamer 188, respectively. The binary ADL/ß-CD and ternary ADL/ß-CD with 1% poloxamer 188 complexes were prepared by kneading and a solvent evaporation method and were characterized by aqueous solubility, FTIR, PXRD, DSC and SEM in vitro studies. The solubility (13.1 fold) and release of ADL were markedly improved in kneaded ternary ADL/ß-CD with 1% poloxamer 188 (KDB). The binding affinity of ADL and ß-CD was confirmed by 1H NMR and 2D ROSEY studies. The ternary complex (KDB) was further subjected for in vivo pharmacokinetic studies in rats and a significant improvement in the bioavailability (2.17 fold) was observed in comparison with pure ADL. Therefore, it can be concluded that the solubilization and bioavailability of ADL can be remarkably increased by ADL/ß-CD complexation in the presence of a third component, poloxamer 188.

4.
J Biomol Struct Dyn ; 40(6): 2851-2864, 2022 04.
Article in English | MEDLINE | ID: covidwho-1026871

ABSTRACT

Ivermectin (IVM) is a broad-spectrum antiparasitic agent, having inhibitory potential against wide range of viral infections. It has also been found to hamper SARS-CoV-2 replication in vitro, and its precise mechanism of action against SARS-CoV-2 is yet to be understood. IVM is known to interact with host importin (IMP)α directly and averts interaction with IMPß1, leading to the prevention of nuclear localization signal (NLS) recognition. Therefore, the current study seeks to employ molecular docking, molecular mechanics generalized Born surface area (MM-GBSA) analysis and molecular dynamics simulation studies for decrypting the binding mode, key interacting residues as well as mechanistic insights on IVM interaction with 15 potential drug targets associated with COVID-19 as well as IMPα. Among all COVID-19 targets, the non-structural protein 9 (Nsp9) exhibited the strongest affinity to IVM showing -5.30 kcal/mol and -84.85 kcal/mol binding energies estimated by AutoDock Vina and MM-GBSA, respectively. However, moderate affinity was accounted for IMPα amounting -6.9 kcal/mol and -66.04 kcal/mol. Stability of the protein-ligand complexes of Nsp9-IVM and IMPα-IVM was ascertained by 100 ns trajectory of all-atom molecular dynamics simulation. Structural conformation of protein in complex with docked IVM exhibited stable root mean square deviation while root mean square fluctuations were also found to be consistent. In silico exploration of the potential targets and their interaction profile with IVM can assist experimental studies as well as designing of COVID-19 drugs. Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , Ivermectin , Antiviral Agents/chemistry , Humans , Ivermectin/pharmacology , Ivermectin/therapeutic use , Molecular Docking Simulation , SARS-CoV-2 , alpha Karyopherins
SELECTION OF CITATIONS
SEARCH DETAIL