Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Document Type
Year range
Preprint in English | medRxiv | ID: ppmedrxiv-22270799


IntroductionViral sequencing of SARS-CoV-2 has been used for outbreak investigation, but there is limited evidence supporting routine use for infection prevention and control (IPC) within hospital settings. MethodsWe conducted a prospective non-randomised trial of sequencing at 14 acute UK hospital trusts. Sites each had a 4-week baseline data-collection period, followed by intervention periods comprising 8 weeks of rapid (<48h) and 4 weeks of longer-turnaround (5-10 day) sequencing using a sequence reporting tool (SRT). Data were collected on all hospital onset COVID-19 infections (HOCIs; detected [≥]48h from admission). The impact of the sequencing intervention on IPC knowledge and actions, and on incidence of probable/definite hospital-acquired infections (HAIs) was evaluated. ResultsA total of 2170 HOCI cases were recorded from October 2020-April 2021, with sequence reports returned for 650/1320 (49.2%) during intervention phases. We did not detect a statistically significant change in weekly incidence of HAIs in longer-turnaround (IRR 1.60, 95%CI 0.85-3.01; P=0.14) or rapid (0.85, 0.48-1.50; P=0.54) intervention phases compared to baseline phase. However, IPC practice was changed in 7.8% and 7.4% of all HOCI cases in rapid and longer-turnaround phases, respectively, and 17.2% and 11.6% of cases where the report was returned. In a per-protocol sensitivity analysis there was an impact on IPC actions in 20.7% of HOCI cases when the SRT report was returned within 5 days. ConclusionWhile we did not demonstrate a direct impact of sequencing on the incidence of nosocomial transmission, our results suggest that sequencing can inform IPC response to HOCIs, particularly when returned within 5 days.

Preprint in English | medRxiv | ID: ppmedrxiv-21260119


BackgroundAccurate, affordable, and rapid point-of-care (PoC) diagnostics are critical to the global control and management of the COVID-19 pandemic. The current standard for accurate diagnosis of SARS-CoV-2 is laboratory-based reverse transcription polymerase chain reaction (RT-PCR). Here, we report a preliminary prospective performance evaluation of the QuantuMDx Q-POC SARS CoV-2 RT-PCR assay. MethodsBetween November 2020 and March 2021, we obtained 49 longitudinal nose and throat swabs from 29 individuals hospitalised with RT-PCR confirmed COVID-19 at St Georges NHS Foundation Trust, London (UK). In addition, we obtained 101 mid nasal swabs from healthy volunteers in June 2021. We then used these samples to evaluate the Q-POC SARS-CoV-2 RT-PCR assay. The primary analysis was to compare the sensitivity and specificity of the Q-POC test against a reference laboratory-based RT-PCR assay. ResultsThe overall sensitivity of the Q-POC test compared with the reference test was 96.88% (83.78%-99.92% CI) for a cycle threshold (Ct) cut-off value for the reference test of 35 and 80.00% (64.35% to 90.95% CI) without altering the reference tests Ct cut-off value of 40. ConclusionsThe Q-POC test is a sensitive, specific and rapid point-of-care test for SARS-CoV-2 at a reference Ct cut-off value of 35. The Q-POC test provides an accurate and affordable option for RT-PCR at point-of-care without the need for sample pre-processing and laboratory handling. The Q-POC test would enable rapid diagnosis and clinical triage in acute care and other settings.

Preprint in English | medRxiv | ID: ppmedrxiv-20124636


We report dynamics of seroconversion to SARS-CoV-2 infections detected by IgG ELISA in 177 individuals diagnosed by RT-PCR. Longitudinal analysis identifies 2-8.5% of individuals who do not seroconvert even weeks after infection. They are younger than seroconverters who have increased co-morbidity and higher inflammatory markers such as C-Reactive Protein. Higher antibody responses are associated with non-white ethnicity. Antibody responses do not decline during follow up almost to 2 months. Serological assays increase understanding of disease severity. Their application in regular surveillance will clarify the duration and protective nature of humoral responses to SARS-CoV-2.

Preprint in English | medRxiv | ID: ppmedrxiv-20082099


Here we describe an open and transparent consortium for the rapid development of COVID-19 rapid diagnostics tests. We report diagnostic accuracy data on the Mologic manufactured IgG COVID-19 ELISA on known positive serum samples and on a panel of known negative respiratory and viral serum samples pre-December 2019. In January, Mologic, embarked on a product development pathway for COVID-19 diagnostics focusing on ELISA and rapid diagnostic tests (RDTs), with anticipated funding from Wellcome Trust and DFID. 834 clinical samples from known COVID-19 patients and hospital negative controls were tested on Mologics IgG ELISA. The reported sensitivity on 270 clinical samples from 124 prospectively enrolled patients was 94% (95% CI: 89.60% - 96.81%) on day 10 or more post laboratory diagnosis, and 96% (95% CI: 84.85% - 99.46%) between 14-21 days post symptom onset. A specificity panel comprising 564 samples collected pre-December 2019 were tested to include most common respiratory pathogens, other types of coronavirus, and flaviviruses. Specificity in this panel was 97% (95% CI: 95.65% - 98.50%). This is the first in a series of Mologic products for COVID-19, which will be deployed for COVID-19 diagnosis, contact tracing and sero-epidemiological studies to estimate disease burden and transmission with a focus on ensuring access, affordability, and availability to low-resource settings.