Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
BMC Pediatr ; 22(1): 392, 2022 07 04.
Article in English | MEDLINE | ID: covidwho-1974123

ABSTRACT

BACKGROUND AND OBJECTIVES: Multisystem Inflammatory Syndrome in Children (MIS-C) is an emerging complication of COVID-19 which lacks a definitive diagnostic test and evidence-based guidelines for workup. We sought to assess practitioners' preferences when initiating a workup for pediatric patients presenting with symptoms concerning for MIS-C. METHODS: In a cross-sectional vignette-based survey, providers were presented with clinical vignettes of a patient presenting with 24 h of fever from a community with high rates of COVID-19. Respondents were asked about their general practices in pursuing a workup for potential MIS-C including testing obtained, criteria for diagnosis, and timing to confirm or rule out the diagnosis. RESULTS: Most of the 174 respondents were physicians from the United States at academic medical centers. The majority of providers would not initiate MIS-C workup for fever and non-specific symptoms unless the fever lasted more than 72 h. Skin rash, abdominal pain, and shortness of breath were symptoms that raised greatest concern for MIS-C. Most providers would obtain COVID-19 PCR or antigen testing, plus blood work, in the initial workup. The list of laboratory studies providers would obtain is extensive. Providers primarily rely on cardiac involvement to confirm a MIS-C diagnosis, and establishing a diagnosis takes 24-48 h. CONCLUSIONS: Significant heterogeneity exists amongst providers as to when to initiate the MIS-C workup, the order and content of the workup, and how to definitively diagnose MIS-C. A diagnostic test with high sensitivity and specificity for MIS-C and refined evidence-based guidelines are needed to expedite diagnosis and treatment.


Subject(s)
COVID-19 , COVID-19/complications , COVID-19/diagnosis , Child , Cross-Sectional Studies , Humans , Systemic Inflammatory Response Syndrome , United States
3.
BMC Infect Dis ; 22(1): 563, 2022 Jun 20.
Article in English | MEDLINE | ID: covidwho-1894421

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening complication that can develop weeks to months after an initial SARS-CoV-2 infection. A complex, time-consuming laboratory evaluation is currently required to distinguish MIS-C from other illnesses. New assays are urgently needed early in the evaluation process to expedite MIS-C workup and initiate treatment when appropriate. This study aimed to measure the performance of a monocyte anisocytosis index, obtained on routine complete blood count (CBC), to rapidly identify subjects with MIS-C at risk for cardiac complications. METHODS: We measured monocyte anisocytosis, quantified by monocyte distribution width (MDW), in blood samples collected from children who sought medical care in a single medical center from April 2020 to October 2020 (discovery cohort). After identifying an effective MDW threshold associated with MIS-C, we tested the utility of MDW as a tier 1 assay for MIS-C at multiple institutions from October 2020 to October 2021 (validation cohort). The main outcome was the early screening of MIS-C, with a focus on children with MIS-C who displayed cardiac complications. The screening accuracy of MDW was compared to tier 1 routine laboratory tests recommended for evaluating a child for MIS-C. RESULTS: We enrolled 765 children and collected 846 blood samples for analysis. In the discovery cohort, monocyte anisocytosis, quantified as an MDW threshold of 24.0, had 100% sensitivity (95% CI 78-100%) and 80% specificity (95% CI 69-88%) for identifying MIS-C. In the validation cohort, an initial MDW greater than 24.0 maintained a 100% sensitivity (95% CI 80-100%) and monocyte anisocytosis displayed a diagnostic accuracy greater that other clinically available hematologic parameters. Monocyte anisocytosis decreased with disease resolution to values equivalent to those of healthy controls. CONCLUSIONS: Monocyte anisocytosis detected by CBC early in the clinical workup improves the identification of children with MIS-C with cardiac complications, thereby creating opportunities for improving current practice guidelines.


Subject(s)
COVID-19 , COVID-19/complications , COVID-19/diagnosis , Child , Humans , Monocytes , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/complications , Systemic Inflammatory Response Syndrome/diagnosis
4.
Blood ; 139(8): 1222-1233, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1528672

ABSTRACT

The newly identified 13-series (T-series) resolvins (RvTs) regulate phagocyte functions and accelerate resolution of infectious inflammation. Because severe acute respiratory syndrome coronavirus 2 elicits uncontrolled inflammation involving neutrophil extracellular traps (NETs), we tested whether stereochemically defined RvTs regulate NET formation. Using microfluidic devices capturing NETs in phorbol 12-myristate 13-acetate-stimulated human whole blood, the RvTs (RvT1-RvT4; 2.5 nM each) potently reduced NETs. With interleukin-1ß-stimulated human neutrophils, each RvT dose and time dependently decreased NETosis, conveying ∼50% potencies at 10 nM, compared with a known NETosis inhibitor (10 µM). In a murine Staphylococcus aureus infection, RvTs (50 ng each) limited neutrophil infiltration, bacterial titers, and NETs. In addition, each RvT enhanced NET uptake by human macrophages; RvT2 was the most potent of the four RvTs, giving a >50% increase in NET-phagocytosis. As part of the intracellular signaling mechanism, RvT2 increased cyclic adenosine monophosphate and phospho-AMP-activated protein kinase (AMPK) within human macrophages, and RvT2-stimulated NET uptake was abolished by protein kinase A and AMPK inhibition. RvT2 also stimulated NET clearance by mouse macrophages in vivo. Together, these results provide evidence for novel pro-resolving functions of RvTs, namely reducing NETosis and enhancing macrophage NET clearance via a cyclic adenosine monophosphate-protein kinase A-AMPK axis. Thus, RvTs open opportunities for regulating NET-mediated collateral tissue damage during infection as well as monitoring NETs.


Subject(s)
Extracellular Traps/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology , Animals , COVID-19/immunology , Humans , Inflammation/immunology , Macrophages/immunology , Mice , Neutrophils/immunology , Phagocytosis , SARS-CoV-2/immunology
5.
Nat Med ; 27(3): 454-462, 2021 03.
Article in English | MEDLINE | ID: covidwho-1319036

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to spread relentlessly, associated with a high frequency of respiratory failure and mortality. Children experience largely asymptomatic disease, with rare reports of multisystem inflammatory syndrome in children (MIS-C). Identifying immune mechanisms that result in these disparate clinical phenotypes in children could provide critical insights into coronavirus disease 2019 (COVID-19) pathogenesis. Using systems serology, in this study we observed in 25 children with acute mild COVID-19 a functional phagocyte and complement-activating IgG response to SARS-CoV-2, similar to the acute responses generated in adults with mild disease. Conversely, IgA and neutrophil responses were significantly expanded in adults with severe disease. Moreover, weeks after the resolution of SARS-CoV-2 infection, children who develop MIS-C maintained highly inflammatory monocyte-activating SARS-CoV-2 IgG antibodies, distinguishable from acute disease in children but with antibody levels similar to those in convalescent adults. Collectively, these data provide unique insights into the potential mechanisms of IgG and IgA that might underlie differential disease severity as well as unexpected complications in children infected with SARS-CoV-2.


Subject(s)
Antibodies, Viral/blood , COVID-19/epidemiology , SARS-CoV-2/immunology , Adolescent , Adult , Age of Onset , Aged , Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/blood , Antibodies, Viral/analysis , Asymptomatic Infections , COVID-19/blood , COVID-19/pathology , Carrier State/blood , Carrier State/epidemiology , Child , Child, Preschool , Cohort Studies , Female , Humans , Immunity/physiology , Immunoglobulin A/blood , Immunoglobulin G/blood , Infant , Infant, Newborn , Male , Middle Aged , Pandemics , Severity of Illness Index , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/epidemiology , Young Adult
8.
J Pediatr ; 227: 45-52.e5, 2020 12.
Article in English | MEDLINE | ID: covidwho-872293

ABSTRACT

OBJECTIVES: As schools plan for re-opening, understanding the potential role children play in the coronavirus infectious disease 2019 (COVID-19) pandemic and the factors that drive severe illness in children is critical. STUDY DESIGN: Children ages 0-22 years with suspected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection presenting to urgent care clinics or being hospitalized for confirmed/suspected SARS-CoV-2 infection or multisystem inflammatory syndrome in children (MIS-C) at Massachusetts General Hospital were offered enrollment in the Massachusetts General Hospital Pediatric COVID-19 Biorepository. Enrolled children provided nasopharyngeal, oropharyngeal, and/or blood specimens. SARS-CoV-2 viral load, ACE2 RNA levels, and serology for SARS-CoV-2 were quantified. RESULTS: A total of 192 children (mean age, 10.2 ± 7.0 years) were enrolled. Forty-nine children (26%) were diagnosed with acute SARS-CoV-2 infection; an additional 18 children (9%) met the criteria for MIS-C. Only 25 children (51%) with acute SARS-CoV-2 infection presented with fever; symptoms of SARS-CoV-2 infection, if present, were nonspecific. Nasopharyngeal viral load was highest in children in the first 2 days of symptoms, significantly higher than hospitalized adults with severe disease (P = .002). Age did not impact viral load, but younger children had lower angiotensin-converting enzyme 2 expression (P = .004). Immunoglobulin M (IgM) and Immunoglobulin G (IgG) to the receptor binding domain of the SARS-CoV-2 spike protein were increased in severe MIS-C (P < .001), with dysregulated humoral responses observed. CONCLUSIONS: This study reveals that children may be a potential source of contagion in the SARS-CoV-2 pandemic despite having milder disease or a lack of symptoms; immune dysregulation is implicated in severe postinfectious MIS-C.


Subject(s)
COVID-19 , Adolescent , Age Factors , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , COVID-19/transmission , COVID-19 Testing , Child , Child, Preschool , Comorbidity , Female , Humans , Infant , Infant, Newborn , Male , Massachusetts/epidemiology , Pandemics , Severity of Illness Index , Viral Load , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL