Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Diagnostics (Basel) ; 12(3)2022 Mar 18.
Article in English | MEDLINE | ID: covidwho-1760433

ABSTRACT

In this study, we first developed an artificial intelligence (AI)-based algorithm for classifying chest computed tomography (CT) images using the coronavirus disease 2019 Reporting and Data System (CO-RADS). Subsequently, we evaluated its accuracy by comparing the calculated scores with those assigned by radiologists with varying levels of experience. This study included patients with suspected SARS-CoV-2 infection who underwent chest CT imaging between February and October 2020 in Japan, a non-endemic area. For each chest CT, the CO-RADS scores, determined by consensus among three experienced chest radiologists, were used as the gold standard. Images from 412 patients were used to train the model, whereas images from 83 patients were tested to obtain AI-based CO-RADS scores for each image. Six independent raters (one medical student, two residents, and three board-certified radiologists) evaluated the test images. Intraclass correlation coefficients (ICC) and weighted kappa values were calculated to determine the inter-rater agreement with the gold standard. The mean ICC and weighted kappa were 0.754 and 0.752 for the medical student and residents (taken together), 0.851 and 0.850 for the diagnostic radiologists, and 0.913 and 0.912 for AI, respectively. The CO-RADS scores calculated using our AI-based algorithm were comparable to those assigned by radiologists, indicating the accuracy and high reproducibility of our model. Our study findings would enable accurate reading, particularly in areas where radiologists are unavailable, and contribute to improvements in patient management and workflow.

2.
Diagn Interv Imaging ; 102(9): 493-500, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1397290

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been reported as a global emergency. As respiratory dysfunction is a major clinical presentation of COVID-19, chest computed tomography (CT) plays a central role in the diagnosis and management of patients with COVID-19. Recent advances in imaging approaches using artificial intelligence have been essential as a quantification and diagnostic tool to differentiate COVID-19 from other respiratory infectious diseases. Furthermore, cardiovascular involvement in patients with COVID-19 is not negligible and may result in rapid worsening of the disease and sudden death. Cardiac magnetic resonance imaging can accurately depict myocardial involvement in SARS-CoV-2 infection. This review summarizes the role of the radiology department in the management and the diagnosis of COVID-19, with a special emphasis on ultra-high-resolution CT findings, cardiovascular complications and the potential of artificial intelligence.


Subject(s)
COVID-19 , Heart Diseases , Artificial Intelligence , COVID-19/complications , COVID-19/diagnostic imaging , Heart Diseases/virology , Humans , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL