Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
Jpn J Infect Dis ; 2022 Aug 31.
Article in English | MEDLINE | ID: covidwho-2231949

ABSTRACT

Since February 2021, healthcare workers in Japan have been preferentially vaccinated with a messenger RNA vaccine (BNT162b2/Pfizer) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While many studies have confirmed that this vaccine is highly effective in reducing hospitalizations and deaths from coronavirus disease 2019 (COVID-19), antibody titers tend to decline at 3 months, leading to a risk of breakthrough infections. Thus, information is needed to support decision making regarding the third vaccination. In this study, we investigated transition of the anti-SARS-CoV-2 spike protein receptor-binding domain (RBD) IgG and neutralizing antibody titers of 37 vaccinated Japanese healthcare workers. Samples were collected six times starting prevaccination until 6 months after the second vaccination. Anti-SARS-CoV-2 RBD IgG levels peaked at 1 week after the second vaccination, then declined over time and decreased to <10% at 6 months after the second vaccination. Additionally, approximately one third of subjects at 6 months after the second vaccination were seronegative for the Omicron variant. Workers with low anti-SARS-CoV-2 RBD IgG levels also had low neutralizing antibody titers. These data support the active use of boosters for healthcare workers, especially for those with low anti-SARS-CoV-2 RBD IgG levels.

2.
Jpn J Infect Dis ; 2022 Aug 31.
Article in English | MEDLINE | ID: covidwho-2217570

ABSTRACT

Since February 2021, healthcare workers in Japan have been preferentially vaccinated with a messenger RNA vaccine (BNT162b2/Pfizer) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While many studies have confirmed that this vaccine is highly effective in reducing hospitalizations and deaths from coronavirus disease 2019 (COVID-19), antibody titers tend to decline at 3 months, leading to a risk of breakthrough infections. Thus, information is needed to support decision making regarding the third vaccination. In this study, we investigated transition of the anti-SARS-CoV-2 spike protein receptor-binding domain (RBD) IgG and neutralizing antibody titers of 37 vaccinated Japanese healthcare workers. Samples were collected six times starting prevaccination until 6 months after the second vaccination. Anti-SARS-CoV-2 RBD IgG levels peaked at 1 week after the second vaccination, then declined over time and decreased to <10% at 6 months after the second vaccination. Additionally, approximately one third of subjects at 6 months after the second vaccination were seronegative for the Omicron variant. Workers with low anti-SARS-CoV-2 RBD IgG levels also had low neutralizing antibody titers. These data support the active use of boosters for healthcare workers, especially for those with low anti-SARS-CoV-2 RBD IgG levels.

3.
Sci Rep ; 12(1): 20120, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2133636

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Variants of concern (VOCs) such as Delta and Omicron have developed, which continue to spread the pandemic. It has been reported that these VOCs reduce vaccine efficacy and evade many neutralizing monoclonal antibodies (mAbs) that target the receptor binding domain (RBD) of the glycosylated spike (S) protein, which consists of the S1 and S2 subunits. Therefore, identification of optimal target regions is required to obtain neutralizing antibodies that can counter VOCs. Such regions have not been identified to date. We obtained 2 mAbs, NIBIC-71 and 7G7, using peripheral blood mononuclear cells derived from volunteers who recovered from COVID-19. Both mAbs had neutralizing activity against wild-type SARS-CoV-2 and Delta, but not Omicron. NIBIC-71 binds to the RBD, whereas 7G7 recognizes the N-terminal domain of the S1. In particular, 7G7 inhibited S1/S2 cleavage but not the interaction between the S protein and angiotensin-converting enzyme 2; it suppressed viral entry. Thus, the efficacy of a neutralizing mAb targeting inhibition of S1/2 cleavage was demonstrated. These results suggest that neutralizing mAbs targeting blockade of S1/S2 cleavage are likely to be cross-reactive against various VOCs.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/chemistry , Leukocytes, Mononuclear , Antibodies, Viral , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Monoclonal
4.
Jpn J Infect Dis ; 2022 Aug 31.
Article in English | MEDLINE | ID: covidwho-2025427

ABSTRACT

Since February 2021, healthcare workers in Japan have been preferentially vaccinated with a messenger RNA vaccine (BNT162b2/Pfizer) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While many studies have confirmed that this vaccine is highly effective in reducing hospitalizations and deaths from coronavirus disease 2019 (COVID-19), antibody titers tend to decline at 3 months, leading to a risk of breakthrough infections. Thus, information is needed to support decision making regarding the third vaccination. In this study, we investigated transition of the anti-SARS-CoV-2 spike protein receptor-binding domain (RBD) IgG and neutralizing antibody titers of 37 vaccinated Japanese healthcare workers. Samples were collected six times starting prevaccination until 6 months after the second vaccination. Anti-SARS-CoV-2 RBD IgG levels peaked at 1 week after the second vaccination, then declined over time and decreased to <10% at 6 months after the second vaccination. Additionally, approximately one third of subjects at 6 months after the second vaccination were seronegative for the Omicron variant. Workers with low anti-SARS-CoV-2 RBD IgG levels also had low neutralizing antibody titers. These data support the active use of boosters for healthcare workers, especially for those with low anti-SARS-CoV-2 RBD IgG levels.

5.
Front Cell Infect Microbiol ; 12: 924725, 2022.
Article in English | MEDLINE | ID: covidwho-1993772

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can cause long-lasting anosmia, but the impact of SARS-CoV-2 infection, which can spread to the nasal cavity via the oral route, on the olfactory receptor neuron (ORN) lineage and olfactory bulb (OB) remains undetermined. Using Syrian hamsters, we explored whether oral SARS-CoV-2 inoculation can lead to nasal viral infection, examined how SARS-CoV-2 affects the ORN lineage by site, and investigated whether SARS-CoV-2 infection can spread to the OB and induce inflammation. On post-inoculation day 7, SARS-CoV-2 presence was confirmed in the lateral area (OCAM-positive) but not the nasal septum of NQO1-positive and OCAM-positive areas. The virus was observed partially infiltrating the olfactory epithelium, and ORN progenitor cells, immature ORNs, and mature ORNs were fewer than in controls. The virus was found in the olfactory nerve bundles to the OB, suggesting the nasal cavity as a route for SARS-CoV-2 brain infection. We demonstrated that transoral SARS-CoV-2 infection can spread from the nasal cavity to the central nervous system and the possibility of central olfactory dysfunction due to SARS-CoV-2 infection. The virus was localized at the infection site and could damage all ORN-lineage cells.


Subject(s)
COVID-19 , Common Cold , Olfactory Receptor Neurons , Animals , Cricetinae , Olfactory Bulb , Olfactory Mucosa , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL