Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Document Type
Year range
Eur Heart J ; 42(35): 3415-3417, 2021 Sep 14.
Article in English | MEDLINE | ID: covidwho-1153213
Nature Climate Change ; 11(3):197-199, 2021.
Article in English | ProQuest Central | ID: covidwho-1117347


Five years after the adoption of the Paris Climate Agreement, growth in global CO2 emissions has begun to falter. The pervasive disruptions from the COVID-19 pandemic have radically altered the trajectory of global CO2 emissions. Contradictory effects of the post-COVID-19 investments in fossil fuel-based infrastructure and the recent strengthening of climate targets must be addressed with new policy choices to sustain a decline in global emissions in the post-COVID-19 era.Growth in CO2 emissions has slowed since the Paris Agreement 5 years ago. The COVID-19 pandemic has caused a drop in emissions of about 7% in 2020 relative to 2019, but strong policy is needed to address underlying drivers and to sustain a decline in global emissions beyond the current crisis.

Nat. Clim. Change ; 7(10): 647-653, 20200701.
Article in English | WHO COVID, ELSEVIER | ID: covidwho-989824


Government policies during the COVID-19 pandemic have drastically altered patterns of energy demand around the world. Many international borders were closed and populations were confined to their homes, which reduced transport and changed consumption patterns. Here we compile government policies and activity data to estimate the decrease in CO2emissions during forced confinements. Daily global CO2emissions decreased by –17% (–11 to –25% for ±1σ) by early April 2020 compared with the mean 2019 levels, just under half from changes in surface transport. At their peak, emissions in individual countries decreased by –26% on average. The impact on 2020 annual emissions depends on the duration of the confinement, with a low estimate of –4% (–2 to –7%) if prepandemic conditions return by mid-June, and a high estimate of –7% (–3 to –13%) if some restrictions remain worldwide until the end of 2020. Government actions and economic incentives postcrisis will likely influence the global CO2emissions path for decades.

Friedlingstein, Pierre, O'Sullivan, Michael, Jones, Matthew W.; Andrew, Robbie M.; Hauck, Judith, Olsen, Are, Peters, Glen P.; Peters, Wouter, Pongratz, Julia, Sitch, Stephen, Corinne, Le Quéré, Canadell, Josep G.; Ciais, Philippe, Jackson, Robert B.; Alin, Simone, Luiz E O , C. Aragão, Arneth, Almut, Arora, Vivek, Bates, Nicholas R.; Becker, Meike, Benoit-Cattin, Alice, Bittig, Henry C.; Bopp, Laurent, Bultan, Selma, Chandra, Naveen, Chevallier, Frédéric, Chini, Louise P.; Evans, Wiley, Florentie, Liesbeth, Forster, Piers M.; Gasser, Thomas, Gehlen, Marion, Gilfillan, Dennis, Gkritzalis, Thanos, Luke, Gregor, Gruber, Nicolas, Harris, Ian, Hartung, Kerstin, Haverd, Vanessa, Houghton, Richard A.; Ilyina, Tatiana, Jain, Atul K.; Joetzjer, Emilie, Kadono, Koji, Kato, Etsushi, Kitidis, Vassilis, Korsbakken, Jan Ivar, Landschützer, Peter, Lefèvre, Nathalie, Lenton, Andrew, Lienert, Sebastian, Liu, Zhu, Lombardozzi, Danica, Marland, Gregg, Metzl, Nicolas, Munro, David R.; Julia E M , S. Nabel, Shin-Ichiro, Nakaoka, Niwa, Yosuke, O'Brien, Kevin, Ono, Tsuneo, Palmer, Paul I.; Pierrot, Denis, Poulter, Benjamin, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Schwinger, Jörg, Séférian, Roland, Skjelvan, Ingunn, Smith, Adam J. P.; Sutton, Adrienne J.; Toste, Tanhua, Tans, Pieter P.; Tian, Hanqin, Tilbrook, Bronte, van der Werf, Guido, Vuichard, Nicolas, Walker, Anthony P.; Wanninkhof, Rik, Watson, Andrew J.; Willis, David, Wiltshire, Andrew J.; Yuan, Wenping, Xu, Yue, Zaehle, Sönke.
Earth System Science Data ; 12(4):3269-3340, 2020.
Article in English | ProQuest Central | ID: covidwho-971932


Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr-1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr-1 when the cement carbonation sink is included), andELUC was 1.6 ± 0.7 GtC yr-1. For the same decade, GATM was 5.1 ± 0.02 GtC yr-1 (2.4 ± 0.01 ppm yr-1), SOCEAN 2.5 ± 0.6 GtC yr-1, and SLAND 3.4 ± 0.9 GtC yr-1, with a budget imbalance BIM of -0.1 GtC yr-1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr-1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr-1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr-1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr-1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr-1 (2.5 ± 0.1 ppm yr-1), SOCEAN was 2.6 ± 0.6 GtC yr-1, and SLAND was 3.1 ± 1.2 GtC yr-1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about -7 % (median estimate) based on individual estimates from four studies of -6 %, -7 %,-7 % (-3 % to -11 %), and -13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr-1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019;Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at 10.18160/gcp-2020 (Friedlingstein et al., 2020).