Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Bio Protoc ; 11(10): e4026, 2021 May 20.
Article in English | MEDLINE | ID: covidwho-2326148

ABSTRACT

The recombinant receptor-binding domain (RBD) of the viral spike protein from SARS-CoV-1 and 2 are reliable antigens for detecting viral-specific antibodies in humans. We and others have shown that the levels of RBD-binding antibodies and SARS-CoV-2 neutralizing antibodies in patients are correlated. Here, we report the expression and purification of properly folded RBD proteins from SARS and common-cold HCoVs in mammalian cells. RBD proteins were produced with cleavable tags for affinity purification from the cell culture medium and to support multiple immunoassay platforms and drug discovery efforts. Graphic abstract: High-Yield Production of Viral Spike RBDs for Diagnostics and Drug Discovery.

2.
Int J Gynaecol Obstet ; 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2239262

ABSTRACT

OBJECTIVE: To measure maternal/fetal SARS-CoV-2 antibody levels. METHODS: A prospective observational study of eligible parturients admitted to the hospital for infant delivery was conducted between April and September 2020. SARS-CoV-2 antibody levels were measured in maternal and umbilical cord specimens using an in-house ELISA based on the receptor-binding domain (RBD) of the spike protein. Among SARS-CoV-2 seropositive patients, spike RBD antibody isotypes (IgG, IgM, and IgA) and ACE2 inhibiting antibodies were measured. RESULTS: In total, 402 mothers were enrolled and spike RBD antibodies in 388 pregnancies were measured (336 maternal and 52 cord specimens). Of them, 19 were positive (15 maternal, 4 cord) resulting in a seroprevalence estimate of 4.8% (95% confidence interval 2.9-7.4). Of the 15 positive maternal specimens, all had cord blood tested. Of the 15 paired specimens, 14 (93.3%) were concordant. Four of the 15 pairs were from symptomatic mothers, and all four showed high spike-ACE2 blocking antibody levels, compared to only 3 of 11 (27.3%) from asymptomatic mothers. CONCLUSION: A variable antibody response to SARS-CoV-2 in pregnancy among asymptomatic infections compared to symptomatic infections was found, the significance of which is unknown. Although transfer of transplacental neutralizing antibodies occurred, additional research is needed to determine how long maternal antibodies can protect the infant against SARS-CoV-2 infection.

3.
PLoS One ; 17(4): e0267353, 2022.
Article in English | MEDLINE | ID: covidwho-1808575

ABSTRACT

BACKGROUND: Early in the pandemic, transmission risk from asymptomatic infection was unclear, making it imperative to monitor infection in workplace settings. Further, data on SARS-CoV-2 seroprevalence within university populations has been limited. METHODS: We performed a longitudinal study of University research employees on campus July-December 2020. We conducted questionnaires on COVID-19 risk factors, RT-PCR testing, and SARS-CoV-2 serology using an in-house spike RBD assay, laboratory-based Spike NTD assay, and standard nucleocapsid platform assay. We estimated prevalence and cumulative incidence of seroconversion with 95% confidence intervals using the inverse of the Kaplan-Meier estimator. RESULTS: 910 individuals were included in this analysis. At baseline, 6.2% (95% CI 4.29-8.19) were seropositive using the spike RBD assay; four (0.4%) were seropositive using the nucleocapsid assay, and 44 (4.8%) using the Spike NTD assay. Cumulative incidence was 3.61% (95% CI: 2.04-5.16). Six asymptomatic individuals had positive RT-PCR results. CONCLUSIONS: Prevalence and incidence of SARS-CoV-2 infections were low; however, differences in target antigens of serological tests provided different estimates. Future research on appropriate methods of serological testing in unvaccinated and vaccinated populations is needed. Frequent RT-PCR testing of asymptomatic individuals is required to detect acute infections, and repeated serosurveys are beneficial for monitoring subclinical infection.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Longitudinal Studies , Pandemics , Prospective Studies , SARS-CoV-2/genetics , Seroepidemiologic Studies
4.
Cell Rep ; 38(5): 110336, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1661802

ABSTRACT

Understanding vaccine-mediated protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is critical to overcoming the global coronavirus disease 2019 (COVID-19) pandemic. We investigate mRNA-vaccine-induced antibody responses against the reference strain, seven variants, and seasonal coronaviruses in 168 healthy individuals at three time points: before vaccination, after the first dose, and after the second dose. Following complete vaccination, both naive and previously infected individuals developed comparably robust SARS-CoV-2 spike antibodies and variable levels of cross-reactive antibodies to seasonal coronaviruses. However, the strength and frequency of SARS-CoV-2 neutralizing antibodies in naive individuals were lower than in previously infected individuals. After the first vaccine dose, one-third of previously infected individuals lacked neutralizing antibodies; this was improved to one-fifth after the second dose. In all individuals, neutralizing antibody responses against the Alpha and Delta variants were weaker than against the reference strain. Our findings support future tailored vaccination strategies against emerging SARS-CoV-2 variants as mRNA-vaccine-induced neutralizing antibodies are highly variable among individuals.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Cross Reactions , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Coronavirus/immunology , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunology
5.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: covidwho-1125727

ABSTRACT

The mosquito protein AEG12 is up-regulated in response to blood meals and flavivirus infection though its function remained elusive. Here, we determine the three-dimensional structure of AEG12 and describe the binding specificity of acyl-chain ligands within its large central hydrophobic cavity. We show that AEG12 displays hemolytic and cytolytic activity by selectively delivering unsaturated fatty acid cargoes into phosphatidylcholine-rich lipid bilayers. This property of AEG12 also enables it to inhibit replication of enveloped viruses such as Dengue and Zika viruses at low micromolar concentrations. Weaker inhibition was observed against more distantly related coronaviruses and lentivirus, while no inhibition was observed against the nonenveloped virus adeno-associated virus. Together, our results uncover the mechanistic understanding of AEG12 function and provide the necessary implications for its use as a broad-spectrum therapeutic against cellular and viral targets.


Subject(s)
Antiviral Agents/metabolism , Hemolytic Agents/metabolism , Insect Proteins/metabolism , Lipids , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cell Line , Cell Membrane/metabolism , Culicidae , Erythrocytes/drug effects , Fatty Acids, Unsaturated/metabolism , Hemolytic Agents/chemistry , Hemolytic Agents/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Insect Proteins/chemistry , Insect Proteins/pharmacology , Ligands , Lipids/chemistry , Protein Binding , Protein Structure, Tertiary , Viral Envelope/metabolism , Viruses/drug effects , Viruses/metabolism
6.
Sci Immunol ; 5(48)2020 06 11.
Article in English | MEDLINE | ID: covidwho-595199

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that first emerged in late 2019 is responsible for a pandemic of severe respiratory illness. People infected with this highly contagious virus can present with clinically inapparent, mild, or severe disease. Currently, the virus infection in individuals and at the population level is being monitored by PCR testing of symptomatic patients for the presence of viral RNA. There is an urgent need for SARS-CoV-2 serologic tests to identify all infected individuals, irrespective of clinical symptoms, to conduct surveillance and implement strategies to contain spread. As the receptor binding domain (RBD) of the spike protein is poorly conserved between SARS-CoVs and other pathogenic human coronaviruses, the RBD represents a promising antigen for detecting CoV-specific antibodies in people. Here we use a large panel of human sera (63 SARS-CoV-2 patients and 71 control subjects) and hyperimmune sera from animals exposed to zoonotic CoVs to evaluate RBD's performance as an antigen for reliable detection of SARS-CoV-2-specific antibodies. By day 9 after the onset of symptoms, the recombinant SARS-CoV-2 RBD antigen was highly sensitive (98%) and specific (100%) for antibodies induced by SARS-CoVs. We observed a strong correlation between levels of RBD binding antibodies and SARS-CoV-2 neutralizing antibodies in patients. Our results, which reveal the early kinetics of SARS-CoV-2 antibody responses, support using the RBD antigen in serological diagnostic assays and RBD-specific antibody levels as a correlate of SARS-CoV-2 neutralizing antibodies in people.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/diagnosis , Immunodominant Epitopes/immunology , Pneumonia, Viral/diagnosis , Protein Domains/immunology , Spike Glycoprotein, Coronavirus/chemistry , Zoonoses/blood , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/virology , Humans , Kinetics , Mice , Mice, Inbred BALB C , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/virology , Protein Binding , Rabbits , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2 , Serologic Tests , Zoonoses/virology
7.
Cell ; 181(7): 1489-1501.e15, 2020 06 25.
Article in English | MEDLINE | ID: covidwho-260045

ABSTRACT

Understanding adaptive immunity to SARS-CoV-2 is important for vaccine development, interpreting coronavirus disease 2019 (COVID-19) pathogenesis, and calibration of pandemic control measures. Using HLA class I and II predicted peptide "megapools," circulating SARS-CoV-2-specific CD8+ and CD4+ T cells were identified in ∼70% and 100% of COVID-19 convalescent patients, respectively. CD4+ T cell responses to spike, the main target of most vaccine efforts, were robust and correlated with the magnitude of the anti-SARS-CoV-2 IgG and IgA titers. The M, spike, and N proteins each accounted for 11%-27% of the total CD4+ response, with additional responses commonly targeting nsp3, nsp4, ORF3a, and ORF8, among others. For CD8+ T cells, spike and M were recognized, with at least eight SARS-CoV-2 ORFs targeted. Importantly, we detected SARS-CoV-2-reactive CD4+ T cells in ∼40%-60% of unexposed individuals, suggesting cross-reactive T cell recognition between circulating "common cold" coronaviruses and SARS-CoV-2.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/immunology , Epitopes, T-Lymphocyte , Pneumonia, Viral/immunology , Betacoronavirus/genetics , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 , COVID-19 Vaccines , Convalescence , Coronavirus Infections/blood , Coronavirus Infections/metabolism , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cross Reactions , Humans , Leukocytes, Mononuclear/immunology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Viral Proteins/metabolism , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL