Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Data ; 7(7):95, 2022.
Article in English | ProQuest Central | ID: covidwho-1963771

ABSTRACT

Developments in deep learning techniques have led to significant advances in automated abnormality detection in radiological images and paved the way for their potential use in computer-aided diagnosis (CAD) systems. However, the development of CAD systems for pulmonary tuberculosis (TB) diagnosis is hampered by the lack of training data that is of good visual and diagnostic quality, of sufficient size, variety, and, where relevant, containing fine-region annotations. This study presents a collection of annotations/segmentations of pulmonary radiological manifestations that are consistent with TB in the publicly available and widely used Shenzhen chest X-ray (CXR) dataset made available by the U.S. National Library of Medicine and obtained via a research collaboration with No. 3. People’s Hospital Shenzhen, China. The goal of releasing these annotations is to advance the state of the art for image segmentation methods toward improving the performance of the fine-grained segmentation of TB-consistent findings in digital chest X-ray images. The annotation collection comprises the following: (1) annotation files in JavaScript Object Notation (JSON) format that indicate locations and shapes of 19 lung pattern abnormalities for 336 TB patients;(2) mask files saved in PNG format for each abnormality per TB patient;and (3) a comma-separated values (CSV) file that summarizes lung abnormality types and numbers per TB patient. To the best of our knowledge, this is the first collection of pixel-level annotations of TB-consistent findings in CXRs.Dataset:https://data.lhncbc.nlm.nih.gov/public/Tuberculosis-Chest-X-ray-Datasets/Shenzhen-Hospital-CXR-Set/Annotations/index.html.Dataset License: Attribution 4.0 International—CC BY-4.0

2.
J Xray Sci Technol ; 29(5): 741-762, 2021.
Article in English | MEDLINE | ID: covidwho-1359155

ABSTRACT

BACKGROUND AND OBJECTIVE: Monitoring recovery process of coronavirus disease 2019 (COVID-19) patients released from hospital is crucial for exploring residual effects of COVID-19 and beneficial for clinical care. In this study, a comprehensive analysis was carried out to clarify residual effects of COVID-19 on hospital discharged patients. METHODS: Two hundred sixty-eight cases with laboratory measured data at hospital discharge record and five follow-up visits were retrospectively collected to carry out statistical data analysis comprehensively, which includes multiple statistical methods (e.g., chi-square, T-test and regression) used in this study. RESULTS: Study found that 13 of 21 hematologic parameters in laboratory measured dataset and volume ratio of right lung lesions on CT images highly associated with COVID-19. Moderate patients had statistically significant lower neutrophils than mild and severe patients after hospital discharge, which is probably caused by more efforts on severe patients and slightly neglection of moderate patients. COVID-19 has residual effects on neutrophil-to-lymphocyte ratio (NLR) of patients who have hypertension or chronic obstructive pulmonary disease (COPD). After released from hospital, female showed better performance in T lymphocytes subset cells, especially T helper lymphocyte% (16% higher than male). According to this sex-based differentiation of COVID-19, male should be recommended to take clinical test more frequently to monitor recovery of immune system. Patients over 60 years old showed unstable recovery process of immune cells (e.g., CD45 + lymphocyte) within 75 days after discharge requiring longer clinical care. Additionally, right lung was vulnerable to COVID-19 and required more time to recover than left lung. CONCLUSIONS: Criterion of hospital discharge and strategy of clinical care should be flexible in different cases due to residual effects of COVID-19, which depend on several impact factors. Revealing remaining effects of COVID-19 is an effective way to eliminate disorder of mental health caused by COVID-19 infection.


Subject(s)
COVID-19/diagnosis , Patient Discharge/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , China , Female , Humans , Longitudinal Studies , Lung/diagnostic imaging , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed , Young Adult
3.
J Xray Sci Technol ; 29(1): 1-17, 2021.
Article in English | MEDLINE | ID: covidwho-916442

ABSTRACT

BACKGROUND: Accurate and rapid diagnosis of coronavirus disease (COVID-19) is crucial for timely quarantine and treatment. PURPOSE: In this study, a deep learning algorithm-based AI model using ResUNet network was developed to evaluate the performance of radiologists with and without AI assistance in distinguishing COVID-19 infected pneumonia patients from other pulmonary infections on CT scans. METHODS: For model development and validation, a total number of 694 cases with 111,066 CT slides were retrospectively collected as training data and independent test data in the study. Among them, 118 are confirmed COVID-19 infected pneumonia cases and 576 are other pulmonary infection cases (e.g. tuberculosis cases, common pneumonia cases and non-COVID-19 viral pneumonia cases). The cases were divided into training and testing datasets. The independent test was performed by evaluating and comparing the performance of three radiologists with different years of practice experience in distinguishing COVID-19 infected pneumonia cases with and without the AI assistance. RESULTS: Our final model achieved an overall test accuracy of 0.914 with an area of the receiver operating characteristic (ROC) curve (AUC) of 0.903 in which the sensitivity and specificity are 0.918 and 0.909, respectively. The deep learning-based model then achieved a comparable performance by improving the radiologists' performance in distinguish COVOD-19 from other pulmonary infections, yielding better average accuracy and sensitivity, from 0.941 to 0.951 and from 0.895 to 0.942, respectively, when compared to radiologists without using AI assistance. CONCLUSION: A deep learning algorithm-based AI model developed in this study successfully improved radiologists' performance in distinguishing COVID-19 from other pulmonary infections using chest CT images.


Subject(s)
Artificial Intelligence , COVID-19/diagnostic imaging , Radiologists , Tomography, X-Ray Computed/methods , Adult , Aged , Algorithms , Clinical Competence/statistics & numerical data , Deep Learning , Diagnosis, Differential , Female , Humans , Lung/diagnostic imaging , Lung/pathology , Male , Middle Aged , Radiologists/statistics & numerical data , Respiratory Tract Infections/diagnostic imaging , SARS-CoV-2 , Sensitivity and Specificity , Young Adult
4.
J Xray Sci Technol ; 28(3): 391-404, 2020.
Article in English | MEDLINE | ID: covidwho-601970

ABSTRACT

Recently, COVID-19 has spread in more than 100 countries and regions around the world, raising grave global concerns. COVID-19 transmits mainly through respiratory droplets and close contacts, causing cluster infections. The symptoms are dominantly fever, fatigue, and dry cough, and can be complicated with tiredness, sore throat, and headache. A few patients have symptoms such as stuffy nose, runny nose, and diarrhea. The severe disease can progress rapidly into the acute respiratory distress syndrome (ARDS). Reverse transcription polymerase chain reaction (RT-PCR) and Next-generation sequencing (NGS) are the gold standard for diagnosing COVID-19. Chest imaging is used for cross validation. Chest CT is highly recommended as the preferred imaging diagnosis method for COVID-19 due to its high density and high spatial resolution. The common CT manifestation of COVID-19 includes multiple segmental ground glass opacities (GGOs) distributed dominantly in extrapulmonary/subpleural zones and along bronchovascular bundles with crazy paving sign and interlobular septal thickening and consolidation. Pleural effusion or mediastinal lymphadenopathy is rarely seen. In CT imaging, COVID-19 manifests differently in its various stages including the early stage, the progression (consolidation) stage, and the absorption stage. In its early stage, it manifests as scattered flaky GGOs in various sizes, dominated by peripheral pulmonary zone/subpleural distributions. In the progression state, GGOs increase in number and/or size, and lung consolidations may become visible. The main manifestation in the absorption stage is interstitial change of both lungs, such as fibrous cords and reticular opacities. Differentiation between COVID-19 pneumonia and other viral pneumonias are also analyzed. Thus, CT examination can help reduce false negatives of nucleic acid tests.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Lung/diagnostic imaging , Lung/pathology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/pathology , Tomography, X-Ray Computed/methods , COVID-19 , Coronavirus Infections/complications , Diagnosis, Differential , Disease Progression , Humans , Pandemics , Pleural Effusion/etiology , Pleural Effusion/pathology , Pneumonia, Viral/complications , Real-Time Polymerase Chain Reaction , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL