Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Gene ; 808: 145963, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1415409

ABSTRACT

As of July 2021, the outbreak of coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has led to more than 200 million infections and more than 4.2 million deaths globally. Complications of severe COVID-19 include acute kidney injury, liver dysfunction, cardiomyopathy, and coagulation dysfunction. Thus, there is an urgent need to identify proteins and genetic factors associated with COVID-19 susceptibility and outcome. We comprehensively reviewed recent findings of host-SARS-CoV-2 interactome analyses. To identify genetic variants associated with COVID-19, we focused on the findings from genome and transcriptome wide association studies (GWAS and TWAS) and bioinformatics analysis. We described established human proteins including ACE2, TMPRSS2, 40S ribosomal subunit, ApoA1, TOM70, HLA-A, and PALS1 interacting with SARS-CoV-2 based on cryo-electron microscopy results. Furthermore, we described approximately 1000 human proteins showing evidence of interaction with SARS-CoV-2 and highlighted host cellular processes such as innate immune pathways affected by infection. We summarized the evidence on more than 20 identified candidate genes in COVID-19 severity. Predicted deleterious and disruptive genetic variants with possible effects on COVID-19 infectivity have been also summarized. These findings provide novel insights into SARS-CoV-2 biology and infection as well as potential strategies for development of novel COVID therapeutic targets and drug repurposing.


Subject(s)
COVID-19/metabolism , Host Microbial Interactions/genetics , SARS-CoV-2/metabolism , COVID-19/physiopathology , Computational Biology/methods , Cryoelectron Microscopy/methods , Crystallography, X-Ray/methods , Genome-Wide Association Study , Host Microbial Interactions/physiology , Host-Pathogen Interactions/genetics , Humans , Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity
2.
Microb Pathog ; 154: 104831, 2021 May.
Article in English | MEDLINE | ID: covidwho-1129108

ABSTRACT

The third pandemic of coronavirus infection, called COVID-19 disease, began recently in China. The newly discovered coronavirus, entitled SARS-CoV-2, is the seventh member of the human coronaviruses. The main pathogenesis of SARS-CoV-2 infection is severe pneumonia, RNAaemia, accompanied by glass turbidity, and acute cardiac injury. It possesses a single-stranded positive-sense RNA genome which is 60-140 nm in diameter, and has a size of 26-32 kbp. Viral pathogenesis is accomplished with spike glycoprotein through the employment of a membrane-bound aminopeptidase, called the ACE2, as its primary cell receptor. It has been confirmed that various factors such as different national rules for quarantine and various races or genetic backgrounds might influence the mortality and infection rate of COVID-19 in the geographic areas. In addition to various known and unknown factors and host genetic susceptibility, mutations and genetic variabilities of the virus itself have a critical impact on variable clinical features of COVID-19. Although the SARS-CoV-2 genome is more stable than SARS-CoV or MERS-CoV, it has a relatively high dynamic mutation rate with respect to other RNA viruses. It's noteworthy that, some mutations can be founder mutations and show specific geographic patterns. Undoubtedly, these mutations can drive viral genetic variability, and because of genotype-phenotype correlation, resulting in a virus with more/lower/no decrease in natural pathogenic fitness or on the other scenario, facilitating their rapid antigenic shifting to escape the host immunity and also inventing a drug resistance virus, so converting it to a more infectious or deadly virus. Overall, the detection of all mutations in SARS-CoV-2 and their relations with pathological changes is nearly impossible, mostly due to asymptomatic subjects. In this review paper, the reported mutations of the SARS-CoV-2 and related variations in virus structure and pathogenicity in different geographic areas and genotypes are widely investigated. Many studies need to be repeated in other regions/locations for other people to confirm the findings. Such studies could benefit patient-specific therapy, according to genotyping patterns of SARS-CoV-2 distribution.


Subject(s)
COVID-19 , SARS-CoV-2 , China/epidemiology , Humans , Mutation , Spike Glycoprotein, Coronavirus/genetics , Virulence
3.
Infect Genet Evol ; 90: 104773, 2021 06.
Article in English | MEDLINE | ID: covidwho-1087145

ABSTRACT

The third pandemic of coronavirus infection, called COVID-19 disease, was first detected in November 2019th. Various determinants of disease progression such as age, sex, virus mutations, comorbidity, lifestyle, host immune response, and genetic background variation have caused clinical variability of COVID-19. The causative agent of COVID-19 is an enveloped coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that invades host cells using an endocytic pathway. The SARS-CoV-2 spike protein is the main viral protein that contributes to the fusion of the virus particle to the host cell through angiotensin-converting enzyme 2 (ACE2). The highly conserved expression of ACE2 is found in various animals, which indicates its pivotal physiological function. The ACE2 has a crucial role in vascular, renal, and myocardial physiology. Genetic factors contributing to the outcome of SARS-CoV-2 infection are unknown; however, variants in the specific sites of ACE2 gene could be regarded as a main genetic risk factor for COVID-19. Given that ACE2 is the main site for virus landing on host cells, the effect of amino acid sequences of ACE2 on host susceptibility to COVID-19 seems reasonable. It would likely have a substantial role in the occurrence of a wide range of clinical symptoms. Several ACE2 variants can affect the protein stability, influencing the interaction between spike protein and ACE2 through imposing conformational changes while some other variants are known to cause a decrease or an increase in the ligand-receptor affinity. The other variations are located at the proteolytic cleavage site, which can influence virus infection; because soluble ACE2 can act as a decoy receptor for virus and decrease virus intake by cell surface ACE2. Notably, polymorphisms of regulatory and non-coding regions such as promoter in ACE2, can play crucial role in different expression levels of ACE2 among different individuals. Many studies should be performed to investigate the involvement of ACE2 polymorphism with susceptibility to COVID-19. Herein, we discuss some reported associations between variants of ACE2 and COVID-19 in details. In addition, the mode of action of ACE2 and its role in SARS-CoV-2 infection are highlighted which is followed by addressing the effects of several ACE2 variants on its protein stability, viral tropism or ligand-receptor affinity, secondary and tertiary structure or protein conformation, proteolytic cleavage site, and finally inter-individual clinical variability in COVID-19. The polymorphisms of regulatory regions of ACE2 and their effect on expression levels of ACE2 are also provided in this review. Such studies can improve the prediction of the affinity of mutant ACE2 variations with spike protein, and help the biopharmaceutical industry to design effective approaches for recombinant hACE2 therapy and vaccination of COVID-19 disease.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , COVID-19/virology , Disease Susceptibility , Genetic Variation , Host-Pathogen Interactions , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/diagnosis , COVID-19/metabolism , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/metabolism , Disease Management , Host-Pathogen Interactions/immunology , Humans , Immune Evasion , Immunity, Innate , Polymorphism, Single Nucleotide , Prognosis , Protein Binding , Receptors, Virus/metabolism , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL