Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
EClinicalMedicine ; 58: 101939, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2303001

ABSTRACT

Background: Nirmatrelvir/ritonavir treatment decreases the hospitalisation rate in immunocompetent patients with COVID-19, but data on efficacy in patients with haematological malignancy are scarce. Here, we describe the outcome of nirmatrelvir/ritonavir treatment in a large cohort of the latter patients. Methods: This is a retrospective cohort study from the multicentre EPICOVIDEHA registry (NCT04733729) on patients with haematological malignancy, who were diagnosed with COVID-19 between January and September 2022. Patients receiving nirmatrelvir/ritonavir were compared to those who did not. A logistic regression was run to determine factors associated with nirmatrelvir/ritonavir administration in our sample. Mortality between treatment groups was assessed with Kaplan-Meier survival plots after matching all the patients with a propensity score. Additionally, a Cox regression was modelled to detect factors associated with mortality in patients receiving nirmatrelvir/ritonavir. Findings: A total of 1859 patients were analysed, 117 (6%) were treated with nirmatrelvir/ritonavir, 1742 (94%) were treated otherwise. Of 117 patients receiving nirmatrelvir/ritonavir, 80% had received ≥1 anti-SARS-CoV-2 vaccine dose before COVID-19 onset, 13% of which received a 2nd vaccine booster. 5% were admitted to ICU. Nirmatrelvir/ritonavir treatment was associated with the presence of extrapulmonary symptoms at COVID-19 onset, for example anosmia, fever, rhinitis, or sinusitis (aOR 2.509, 95%CI 1.448-4.347) and 2nd vaccine booster (aOR 3.624, 95%CI 1.619-8.109). Chronic pulmonary disease (aOR 0.261, 95%CI 0.093-0.732) and obesity (aOR 0.105, 95%CI 0.014-0.776) were not associated with nirmatrelvir/ritonavir use. After propensity score matching, day-30 mortality rate in patients treated with nirmatrelvir/ritonavir was 2%, significantly lower than in patients with SARS-CoV-2 directed treatment other than nirmatrelvir/ritonavir (11%, p = 0.036). No factor was observed explaining the mortality difference in patients after nirmatrelvir/ritonavir administration. Interpretation: Haematological malignancy patients were more likely to receive nirmatrelvir/ritonavir when reporting extrapulmonary symptoms or 2nd vaccine booster at COVID-19 onset, as opposed to chronic pulmonary disease and obesity. The mortality rate in patients treated with nirmatrelvir/ritonavir was lower than in patients with targeted drugs other than nirmatrelvir/ritonavir. Funding: EPICOVIDEHA has received funds from Optics COMMIT (COVID-19 Unmet Medical Needs and Associated Research Extension) COVID-19 RFP program by GILEAD Science, United States (Project 2020-8223).

2.
Ther Adv Hematol ; 14: 20406207231154706, 2023.
Article in English | MEDLINE | ID: covidwho-2270803

ABSTRACT

Background: Patients with Philadelphia-negative chronic myeloproliferative neoplasms (MPN) typically incur high rates of infections and both drugs and comorbidities may modulate infection risk. Objectives: The present study aims to assess the effect of immunosuppressive agents on clinical outcomes of MPN patients affected by the coronavirus disease 2019 (COVID-19). Design: This is an observational study. Methods: We specifically searched and analyzed MPN patients collected by EPICOVIDEHA online registry, which includes individuals with hematological malignancies diagnosed with COVID-19 since February 2020. Results: Overall, 398 patients with MPN were observed for a median of 76 days [interquartile range (IQR): 19-197] after detection of SARS-CoV2 infection. Median age was 69 years (IQR: 58-77) and 183 individuals (46%) had myelofibrosis (MF). Overall, 121 patients (30%) of the whole cohort received immunosuppressive therapies including steroids, immunomodulatory drugs, or JAK inhibitors. Hospitalization and consecutive admission to intensive care unit was required in 216 (54%) and 53 patients (13%), respectively. Risk factors for hospital admission were identified by multivariable logistic regression and include exposure to immunosuppressive therapies [odds ratio (OR): 2.186; 95% confidence interval (CI): 1.357-3.519], age ⩾70 years, and comorbidities. The fatality rate was 22% overall and the risk of death was independently increased by age ⩾70 years [hazard ratio (HR): 2.191; 95% CI: 1.363-3.521], previous comorbidities, and exposure to immunosuppressive therapies before the infection (HR: 2.143; 95% CI: 1.363-3.521). Conclusion: COVID-19 infection led to a particularly dismal outcome in MPN patients receiving immunosuppressive agents or reporting multiple comorbidities. Therefore, specific preventive strategies need to be tailored for such individuals. Plain language summary: EPICOVIDEHA registry reports inferior outcomes of COVID-19 in patients with Philadelphia-negative chronic myeloproliferative neoplasms receiving immunosuppressive therapies. Patients with Philadelphia-negative chronic myeloproliferative neoplasms (MPN) incur high rates of infections during the course of their disease.The present study was aimed at assessing which patient characteristics predicted a worse outcome of SARS-COV-2 infection in individuals with MPN.To pursue this objective, the researchers analyzed the data collected by EPICOVIDEHA, an international online registry, which includes individuals with hematological malignancies diagnosed with COVID-19 since February 2020.The database provided clinical data of 398 patients with MPN incurring COVID-19:Patients were mostly elderly (median age was 69 years);Forty-six percent of them were affected by myelofibrosis, which is the most severe MPN;Moreover, 32% were receiving immunosuppressive therapies (JAK inhibitors, such as ruxolitinib, steroids, or immunomodulatory IMID drugs, such as thalidomide) before COVID-19.Hospitalization was required in 54% of the patients, and the risk of being hospitalized for severe COVID-19 was independently predicted byOlder age;Comorbidities;Exposure to immunosuppressive therapies.Overall, 22% of MPN patients deceased soon after COVID-19 and the risk of death was independently increased over twofold byOlder age;Comorbidities;Exposure to immunosuppressive therapies before the infection.In conclusion, COVID-19 infection led to a particularly dismal outcome in MPN patients receiving immunosuppressive agents, including JAK inhibitors, or reporting multiple comorbidities. Therefore, specific preventive strategies need to be tailored for such individuals.

3.
Haematologica ; 2022 05 12.
Article in English | MEDLINE | ID: covidwho-2232971

ABSTRACT

Patients with acute myeloid leukemia (AML) are at high risk of mortality from coronavirus disease 2019 (COVID-19). The optimal management of AML patients with COVID-19 has not been established. Our multicenter study included 388 adult AML patients with COVID-19 diagnosis between February 2020 and October 2021. The vast majority were receiving or had received AML treatment in the prior 3 months. COVID-19 was severe in 41.2% and critical in 21.1% of cases. The chemotherapeutic schedule was modified in 174 patients (44.8%), delayed in 68 and permanently discontinued in 106. After a median follow-up of 325 days, 180 patients (46.4%) had died; death was attributed to COVID-19 (43.3%), AML (26.1%) or to a combination of both (26.7%), whereas in 3.9% of cases the reason was unknown. Active disease, older age, and treatment discontinuation were associated with death, whereas AML treatment delay was protective. Seventy-nine patients had a simultaneous AML and COVID-19 diagnosis, with an improved survival when AML treatment could be delayed (80%; p<0.001). Overall survival in patients with COVID-19 diagnosis between January 2020 and August 2020 was significantly lower than those who were diagnosed between September 2020 and February 2021 and between March 2021 and September 2021 (39.8% vs 60% vs 61.9%, respectively; p=0.006). COVID-19 in AML patients was associated with a high mortality rate and modifications of therapeutic algorithms. The best approach to improve survival was to delay AML treatment, whenever possible.

4.
Visentin, Andrea, Scarfò, Lydia, Chatzikonstantinou, Thomas, Kapetanakis, Anargyros, Demosthenous, Christos, Karakatsoulis, Georgios, Andres, Martin, Antic, Darko, Allsup, David, Baile, Mónica, Bron, Dominique, Capasso, Antonella, Catherwood, Mark, Collado, Rosa, Cordoba, Raul, Cuéllar-García, Carolina, Delgado, Julio, Dimou, Maria, Doubek, Michael, De Paoli, Lorenzo, De Paolis, Maria Rosaria, Del Poeta, Giovanni, Efstathopoulou, Maria, Shimaa, El-Ashwah, Enrico, Alicia, Farina, Lucia, Ferrari, Angela, Foglietta, Myriam, Furstenau, Moritz, Garcia-Marco, Jose A.; Gentile, Massimo, Gimeno, Eva, Maria, Gomes da Silva, Gutwein, Odit, Hakobyan, Yervand, Herishanu, Yair, Hernandez, jose Angel, Herold, Tobias, Iyengar, Sunil, Itchaki, Gilad, Jaksic, Ozren, Janssens, Ann, Kalashnikova, Olga, Kalicinska, Elzbieta, Kater, Arnon P.; Kersting, Sabina, Labrador, Jorge, Lad, Deepesh, Laurenti, Luca, Levin, Mark-David, Lista, Enrico, Malerba, Lara, Marasca, Roberto, Marchetti, Monia, Marquet Palomanes, Juan, Mattsson, Mattias, Mauro, Francesca Romana, Mayor-Bastida, Carlota, Morawska, Marta, Motta, Marina, Munir, Talha, Murru, Roberta, Milosevic, Ivana, Miras Calvo, Fatima, Niemann, Carsten Utoft, Olivieri, Jacopo, Orsucci, Lorella, Papaioannou, Maria, Pavlovsky, Miguel Arturo, Piskunova, Inga S.; Pocali, Barbara, Popov, Viola Maria, Quaglia, Francesca Maria, Quaresmini, Giulia, Raa, Doreen te, Reda, Gianluigi, Rigolin, Gian Matteo, Ruchlemer, Rosa, Shrestha, Amit, Šimkovič, Martin, Špaček, Martin, Sportoletti, Paolo, Stanca Ciocan, Oana, Tadmor, Tamar, Vandenberghe, Elisabeth, Varettoni, Marzia, Vitale, Candida, Van Der Spek, Ellen, Van Gelder, Michel, Wasik-Szczepanek, Ewa, Yáñez, Lucrecia, Yassin, Mohamed A.; Coscia, Marta, Eichhorst, Barbara, Rambaldi, Alessandro, Stavroyianni, Niki, Trentin, Livio, Stamatopoulos, Kostas, Ghia, Paolo.
Blood ; 140:2333-2337, 2022.
Article in English | ScienceDirect | ID: covidwho-2120438
5.
Antic, Darko, Milic, Natasa, Chatzikonstantinou, Thomas, Scarfò, Lydia, Otasevic, Vladimir, Rajovic, Nina, Allsup, David, Cabrero, Alejandro Alonso, Andres, Martin, Baile Gonzales, Monica, Capasso, Antonella, Collado, Rosa, Cordoba, Raul, Cuéllar-García, Carolina, Correa, Juan Gonzalo, De Paoli, Lorenzo, De Paolis, Maria Rosaria, Del Poeta, Giovanni, Dimou, Maria, Doubek, Michael, Efstathopoulou, Maria, El-Ashwah, Shaimaa, Enrico, Alicia, Espinet, Blanca, Farina, Lucia, Ferrari, Angela, Foglietta, Myriam, Lopez-Garcia, Alberto, Garcia-Marco, Jose A.; García-Serra, Rocío, Gentile, Massimo, Gimeno, Eva, Gomes da Silva, Maria, Gutwein, Odit, Hakobyan, Yervand, Herishanu, Yair, Hernández-Rivas, José Ángel, Herold, Tobias, Itchaki, Gilad, Jaksic, Ozren, Janssens, Ann, Kalashnikova, Оlga B.; Kalicińska, Elżbieta, Kater, Arnon P.; Kersting, Sabina, Koren-Michowitz, Maya, Gomez, Jorge Labrador, Lad, Deepesh, Laurenti, Luca, Fresa, Alberto, Levin, Mark-David, Mayor Bastida, Carlota, Malerba, Lara, Marasca, Roberto, Marchetti, Monia, Marquet, Juan, Mihaljevic, Biljana, Milosevic, Ivana, Mirás, Fatima, Morawska, Marta, Motta, Marina, Munir, Talha, Murru, Roberta, Nunes, Raquel, Olivieri, Jacopo, Pavlovsky, Miguel Arturo, Piskunova, Inga S.; Popov, Viola Maria, Quaglia, Francesca Maria, Quaresmini, Giulia, Reda, Gianluigi, Rigolin, Gian Matteo, Shrestha, Amit, Šimkovič, Martin, Smirnova, Svetlana, Špaček, Martin, Sportoletti, Paolo, Stanca, Oana, Stavroyianni, Niki, Te Raa, Doreen, Tomic, Kristina, Tonino, Sanne, Trentin, Livio, Van Der Spek, Ellen, van Gelder, Michel, Varettoni, Marzia, Visentin, Andrea, Vitale, Candida, Vukovic, Vojin, Wasik-Szczepanek, Ewa, Wróbel, Tomasz, Yanez San Segundo, Lucrecia, Yassin, Mohamed A.; Coscia, Marta, Rambaldi, Alessandro, Montserrat, Emili, Foà, Robin, Cuneo, Antonio, Carrier, Marc, Ghia, Paolo, Stamatopoulos, Kostas.
Blood ; 140:2772-2775, 2022.
Article in English | ScienceDirect | ID: covidwho-2119921
6.
Cancers (Basel) ; 14(22)2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2109949

ABSTRACT

BACKGROUND: The outcome of patients with simultaneous diagnosis of haematological malignancies (HM) and COVID-19 is unknown and there are no specific treatment guidelines. METHODS: We describe the clinical features and outcome of a cohort of 450 patients with simultaneous diagnosis of HM and COVID-19 registered in the EPICOVIDEHA registry between March 2020 to February 2022. RESULTS: Acute leukaemia and lymphoma were the most frequent HM (35.8% and 35.1%, respectively). Overall, 343 (76.2%) patients received treatment for HM, which was delayed for longer than one month since diagnosis in 57 (16.6%). An overall response rate was observed in 140 (40.8%) patients after the first line of treatment. After a median follow-up of 35 days, overall mortality was 177/450 (39.3%); 30-day mortality was significantly higher in patients not receiving HM treatment (42.1%) than in those receiving treatment (27.4%, p = 0.004), either before and/or after COVID-19, or compared to patients receiving HM treatment at least after COVID-19 (15.2%, p < 0.001). Age, severe/critical COVID-19, ≥2 comorbidities, and lack of HM treatment were independent risk factors for mortality, whereas a lymphocyte count >500/mcl at COVID-19 onset was protective. CONCLUSIONS: HM treatment should be delivered as soon as possible for patients with simultaneous diagnosis of COVID-19 and HM requiring immediate therapy.

7.
Front Oncol ; 12: 992137, 2022.
Article in English | MEDLINE | ID: covidwho-2080206

ABSTRACT

Patients with lymphoproliferative diseases (LPD) are vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we describe and analyze the outcome of 366 adult patients with chronic lymphocytic leukemia (CLL) or non-Hodgkin Lymphoma (NHL) treated with targeted drugs and laboratory-confirmed COVID-19 diagnosed between February 2020 and January 2022. Median follow-up was 70.5 days (IQR 0-609). Most used targeted drugs were Bruton-kinase inhibitors (BKIs) (N= 201, 55%), anti-CD20 other than rituximab (N=61, 16%), BCL2 inhibitors (N=33, 9%) and lenalidomide (N=28, 8%).Only 16.2% of the patients were vaccinated with 2 or more doses of vaccine at the onset of COVID-19. Mortality was 24% (89/366) on day 30 and 36%(134/366) on the last day of follow-up. Age >75 years (p<0.001, HR 1.036), active malignancy (p<0.001, HR 2.215), severe COVID-19 (p=0.017, HR 2.270) and admission to ICU (p<0.001, HR 5.751) were risk factors for mortality at last day of follow up. There was no difference in OS rates in NHL vs CLL patients (p=0.306), nor in patients treated with or without BKIs (p=0.151). Mortality in ICU was 66% (CLL 61%, NHL 76%). Overall mortality rate decreased according to vaccination status, being 39% in unvaccinated patients, 32% and 26% in those having received one or two doses, respectively, and 20% in patients with a booster dose (p=0.245). Overall mortality rate dropped from 41% during the first semester of 2020 to 25% at the last semester of 2021. These results show increased severity and mortality from COVID-19 in LPDs patients treated with targeted drugs.

8.
Blood ; 2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2038612

ABSTRACT

Limited data have been published on the epidemiology and outcomes of breakthrough COVID-19 in patients with hematological malignancy (HM) after anti-SARS-CoV-2 vaccination. Adult HM who received at least one dose of anti-SARS-CoV-2 vaccine and diagnosed with breakthrough COVID-19 between January 2021 and March 2022 and registered in EPICOVIDEHA were included in this analysis. A total of 1548 cases were included, mainly with lymphoid malignancies (1181 cases, 76%). After viral genome sequencing in 753 cases (49%), Omicron variant was prevalent (517, 68.7%). Most of the patients received at least two vaccine doses before COVID-19 (1419, 91%), mostly mRNA-based (1377, 89%). Overall, 906 patients (59%) received specific treatment for COVID-19. After 30-days follow-up from COVID-19 diagnosis, 143 patients (9%) died. The mortality rate in patients with Omicron variant was of 7.9%, comparable to that reported for the other variants. The 30-day mortality rate was significantly lower than in the pre-vaccine era (31%). In the univariable analysis, older age (p<0.001), active HM (p<0.001), severe and critical COVID-19 (p=0.007 and p<0.001, respectively) were associated with mortality. Conversely, patients receiving monoclonal antibodies, even for severe or critical COVID-19, had a lower mortality rate (p<0.001). In the multivariable model, older age, active disease, critical COVID-19 and at least 2-3 comorbidities were correlated with a higher mortality, whereas the administration of monoclonal antibodies, alone (p<0.001) or combined with antivirals (p=0.009), was observed protective. While mortality is significantly lower than in the pre-vaccination era, breakthrough COVID-19 in HM is still associated with considerable mortality. Death rate was lower in patients who received monoclonal antibodies, alone or in combination with antivirals. EPICOVIDEHA (www.clinicaltrials.gov; National Clinical Trials identifier NCT04733729) is an international open web-based registry for patients with HMs infected with SARS-CoV-2.

9.
J Hematol Oncol ; 15(1): 116, 2022 08 26.
Article in English | MEDLINE | ID: covidwho-2021317

ABSTRACT

BACKGROUND: Patients with chronic lymphocytic leukemia (CLL) may be more susceptible to COVID-19 related poor outcomes, including thrombosis and death, due to the advanced age, the presence of comorbidities, and the disease and treatment-related immune deficiency. The aim of this study was to assess the risk of thrombosis and bleeding in patients with CLL affected by severe COVID-19. METHODS: This is a retrospective multicenter study conducted by ERIC, the European Research Initiative on CLL, including patients from 79 centers across 22 countries. Data collection was conducted between April and May 2021. The COVID-19 diagnosis was confirmed by the real-time polymerase chain reaction (RT-PCR) assay for SARS-CoV-2 on nasal or pharyngeal swabs. Severe cases of COVID-19 were defined by hospitalization and the need of oxygen or admission into ICU. Development and type of thrombotic events, presence and severity of bleeding complications were reported during treatment for COVID-19. Bleeding events were classified using ISTH definition. STROBE recommendations were used in order to enhance reporting. RESULTS: A total of 793 patients from 79 centers were included in the study with 593 being hospitalized (74.8%). Among these, 511 were defined as having severe COVID: 162 were admitted to the ICU while 349 received oxygen supplementation outside the ICU. Most patients (90.5%) were receiving thromboprophylaxis. During COVID-19 treatment, 11.1% developed a thromboembolic event, while 5.0% experienced bleeding. Thrombosis developed in 21.6% of patients who were not receiving thromboprophylaxis, in contrast to 10.6% of patients who were on thromboprophylaxis. Bleeding episodes were more frequent in patients receiving intermediate/therapeutic versus prophylactic doses of low-molecular-weight heparin (LWMH) (8.1% vs. 3.8%, respectively) and in elderly. In multivariate analysis, peak D-dimer level and C-reactive protein to albumin ratio were poor prognostic factors for thrombosis occurrence (OR = 1.022, 95%CI 1.007‒1.038 and OR = 1.025, 95%CI 1.001‒1.051, respectively), while thromboprophylaxis use was protective (OR = 0.199, 95%CI 0.061‒0.645). Age and LMWH intermediate/therapeutic dose administration were prognostic factors in multivariate model for bleeding (OR = 1.062, 95%CI 1.017-1.109 and OR = 2.438, 95%CI 1.023-5.813, respectively). CONCLUSIONS: Patients with CLL affected by severe COVID-19 are at a high risk of thrombosis if thromboprophylaxis is not used, but also at increased risk of bleeding under the LMWH intermediate/therapeutic dose administration.


Subject(s)
COVID-19 Drug Treatment , Leukemia, Lymphocytic, Chronic, B-Cell , Thrombosis , Venous Thromboembolism , Aged , Anticoagulants , COVID-19 Testing , Hemorrhage , Heparin, Low-Molecular-Weight , Humans , SARS-CoV-2
12.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1733355

ABSTRACT

During the ongoing COVID-19 epidemic many efforts have gone into the investigation of the SARS-CoV-2–specific antibodies as possible therapeutics. Currently, conclusions cannot be drawn due to the lack of standardization in antibody assessments. Here we describe an approach of establishing antibody characterisation in emergent times which would, if followed, enable comparison of results from different studies. The key component is a reliable and reproducible assay of wild-type SARS-CoV-2 neutralisation based on a banking system of its biological components - a challenge virus, cells and an anti-SARS-CoV-2 antibody in-house standard, calibrated to the First WHO International Standard immediately upon its availability. Consequently, all collected serological data were retrospectively expressed in an internationally comparable way. The neutralising antibodies (NAbs) among convalescents ranged from 4 to 2869 IU mL-1 in a significant positive correlation to the disease severity. Their decline in convalescents was on average 1.4-fold in a one-month period. Heat-inactivation resulted in 2.3-fold decrease of NAb titres in comparison to the native sera, implying significant complement activating properties of SARS-CoV-2 specific antibodies. The monitoring of NAb titres in the sera of immunocompromised COVID-19 patients that lacked their own antibodies evidenced the successful transfusion of antibodies by the COVID-19 convalescent plasma units with NAb titres of 35 IU mL-1 or higher.

15.
Leukemia ; 35(12): 3444-3454, 2021 12.
Article in English | MEDLINE | ID: covidwho-1493064

ABSTRACT

Patients with chronic lymphocytic leukemia (CLL) may be more susceptible to Coronavirus disease 2019 (COVID-19) due to age, disease, and treatment-related immunosuppression. We aimed to assess risk factors of outcome and elucidate the impact of CLL-directed treatments on the course of COVID-19. We conducted a retrospective, international study, collectively including 941 patients with CLL and confirmed COVID-19. Data from the beginning of the pandemic until March 16, 2021, were collected from 91 centers. The risk factors of case fatality rate (CFR), disease severity, and overall survival (OS) were investigated. OS analysis was restricted to patients with severe COVID-19 (definition: hospitalization with need of oxygen or admission into an intensive care unit). CFR in patients with severe COVID-19 was 38.4%. OS was inferior for patients in all treatment categories compared to untreated (p < 0.001). Untreated patients had a lower risk of death (HR = 0.54, 95% CI:0.41-0.72). The risk of death was higher for older patients and those suffering from cardiac failure (HR = 1.03, 95% CI:1.02-1.04; HR = 1.79, 95% CI:1.04-3.07, respectively). Age, CLL-directed treatment, and cardiac failure were significant risk factors of OS. Untreated patients had a better chance of survival than those on treatment or recently treated.


Subject(s)
COVID-19/complications , COVID-19/mortality , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , COVID-19/diagnosis , COVID-19/virology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Leukemia, Lymphocytic, Chronic, B-Cell/virology , Mortality , Prognosis , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Survival Analysis
16.
J Hematol Oncol ; 14(1): 168, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1468074

ABSTRACT

BACKGROUND: Patients with hematological malignancies (HM) are at high risk of mortality from SARS-CoV-2 disease 2019 (COVID-19). A better understanding of risk factors for adverse outcomes may improve clinical management in these patients. We therefore studied baseline characteristics of HM patients developing COVID-19 and analyzed predictors of mortality. METHODS: The survey was supported by the Scientific Working Group Infection in Hematology of the European Hematology Association (EHA). Eligible for the analysis were adult patients with HM and laboratory-confirmed COVID-19 observed between March and December 2020. RESULTS: The study sample includes 3801 cases, represented by lymphoproliferative (mainly non-Hodgkin lymphoma n = 1084, myeloma n = 684 and chronic lymphoid leukemia n = 474) and myeloproliferative malignancies (mainly acute myeloid leukemia n = 497 and myelodysplastic syndromes n = 279). Severe/critical COVID-19 was observed in 63.8% of patients (n = 2425). Overall, 2778 (73.1%) of the patients were hospitalized, 689 (18.1%) of whom were admitted to intensive care units (ICUs). Overall, 1185 patients (31.2%) died. The primary cause of death was COVID-19 in 688 patients (58.1%), HM in 173 patients (14.6%), and a combination of both COVID-19 and progressing HM in 155 patients (13.1%). Highest mortality was observed in acute myeloid leukemia (199/497, 40%) and myelodysplastic syndromes (118/279, 42.3%). The mortality rate significantly decreased between the first COVID-19 wave (March-May 2020) and the second wave (October-December 2020) (581/1427, 40.7% vs. 439/1773, 24.8%, p value < 0.0001). In the multivariable analysis, age, active malignancy, chronic cardiac disease, liver disease, renal impairment, smoking history, and ICU stay correlated with mortality. Acute myeloid leukemia was a higher mortality risk than lymphoproliferative diseases. CONCLUSIONS: This survey confirms that COVID-19 patients with HM are at high risk of lethal complications. However, improved COVID-19 prevention has reduced mortality despite an increase in the number of reported cases.


Subject(s)
COVID-19/complications , Hematologic Neoplasms/complications , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/therapy , Europe/epidemiology , Female , Hematologic Neoplasms/epidemiology , Hematologic Neoplasms/therapy , Hospitalization , Humans , Intensive Care Units , Male , Middle Aged , Registries , Risk Factors , SARS-CoV-2/isolation & purification , Young Adult
17.
Leukemia ; 34(9): 2354-2363, 2020 09.
Article in English | MEDLINE | ID: covidwho-638239

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a disease of the elderly, characterized by immunodeficiency. Hence, patients with CLL might be considered more susceptible to severe complications from COVID-19. We undertook this retrospective international multicenter study to characterize the course of COVID-19 in patients with CLL and identify potential predictors of outcome. Of 190 patients with CLL and confirmed COVID-19 diagnosed between 28/03/2020 and 22/05/2020, 151 (79%) presented with severe COVID-19 (need of oxygen and/or intensive care admission). Severe COVID-19 was associated with more advanced age (≥65 years) (odds ratio 3.72 [95% CI 1.79-7.71]). Only 60 patients (39.7%) with severe COVID-19 were receiving or had recent (≤12 months) treatment for CLL at the time of COVID-19 versus 30/39 (76.9%) patients with mild disease. Hospitalization rate for severe COVID-19 was lower (p < 0.05) for patients on ibrutinib versus those on other regimens or off treatment. Of 151 patients with severe disease, 55 (36.4%) succumbed versus only 1/38 (2.6%) with mild disease; age and comorbidities did not impact on mortality. In CLL, (1) COVID-19 severity increases with age; (2) antileukemic treatment (particularly BTK inhibitors) appears to exert a protective effect; (3) age and comorbidities did not impact on mortality, alluding to a relevant role of CLL and immunodeficiency.


Subject(s)
Betacoronavirus , Coronavirus Infections/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Pneumonia, Viral/pathology , Adenine/analogs & derivatives , Age Factors , Aged , Aged, 80 and over , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , COVID-19 , Comorbidity , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Male , Middle Aged , Pandemics , Piperidines , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Prognosis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL