Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
researchsquare; 2021.


Introduction We examined the epidemiology of community- and hospital-acquired bloodstream infections (BSIs) in COVID-19 and non-COVID-19 patients across two epidemic waves. Methods We analysed blood cultures, SARS-CoV-2 tests, and hospital episodes of patients presenting and admitted to a London hospital group between January 2020 and February 2021. We reported BSI incidence, as well as changes in sampling, case mix, bed and staff capacity, and COVID-19 variants. Results 34,044 blood cultures were taken. We identified 1,047 BSIs; 653 (62.4%) defined epidemiologically as community-acquired and 394 (37.6%) as hospital-acquired. BSI rates and community / hospital ratio were similar to those pre-pandemic. However, important changes in patterns were seen. Among community-acquired BSIs, Escherichia coli BSIs remained lower than pre-pandemic level during the two COVID-19 waves, however peaked following lockdown easing in May 2020, deviating from the historical trend of peaking in August. The hospital-acquired BSI rate was 100.4 per 100,000 patient-days across the pandemic, increasing to 132.3 during the first COVID-19 wave and 190.9 during the second, with significant increase seen in elective non-COVID-19 inpatients. Patients who developed a hospital-acquired BSI, including those without COVID-19, experienced 20.2 excess days of hospital stay and 26.7% higher mortality, higher than reported in pre-pandemic literature. In intensive care units (ICUs), the overall BSI rate was 311.8 per 100,000 patient-ICU days, increasing to 421.0 during the second wave, compared to 101.3 pre-COVID. The BSI incidence in those infected with the SARS-CoV-2 Alpha variant was similar to that seen with earlier variants. Conclusion The pandemic and national responses have had an impact on patterns of community- and hospital-acquired BSIs, in both COVID-19 and non-COVID-19 patients. Factors driving the observed BSI patterns are complex, including changed patient mix, deferred access to health care, and sub-optimal practice. Infection surveillance needs to consider key aspects of pandemic response and changes in healthcare access and practice.

medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.24.21259107


Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage B.1.1.7 has been associated with an increased rate of transmission and disease severity among subjects testing positive in the community. Its impact on hospitalised patients is less well documented. Methods We collected viral sequences and clinical data of patients admitted with SARS-CoV-2 and hospital-onset COVID-19 infections (HOCIs), sampled 16/11/2020 - 10/01/2021, from eight hospitals participating in the COG-UK-HOCI study. Associations between the variant and the outcomes of all-cause mortality and intensive therapy unit (ITU) admission were evaluated using mixed effects Cox models adjusted by age, sex, comorbidities, care home residence, pregnancy and ethnicity. Results Sequences were obtained from 2341 inpatients (HOCI cases = 786) and analysis of clinical outcomes was carried out in 2147 inpatients with all data available. The hazard ratio (HR) for mortality of B.1.1.7 compared to other lineages was 1.01 (95% CI 0.79-1.28, P=0.94) and for ITU admission was 1.01 (95% CI 0.75-1.37, P=0.96). Analysis of sex-specific effects of B.1.1.7 identified increased risk of mortality (HR 1.30, 95% CI 0.95-1.78) and ITU admission (HR 1.82, 95% CI 1.15-2.90) in females infected with the variant but not males (mortality HR 0.82, 95% CI 0.61-1.10; ITU HR 0.74, 95% CI 0.52-1.04). Conclusions In common with smaller studies of patients hospitalised with SARS-CoV-2 we did not find an overall increase in mortality or ITU admission associated with B.1.1.7 compared to other lineages. However, women with B.1.1.7 may be at an increased risk of admission to intensive care and at modestly increased risk of mortality.