Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Molecular Therapy - Nucleic Acids ; 2023.
Article in English | ScienceDirect | ID: covidwho-2181967

ABSTRACT

Since its discovery COVID-19 has rapidly spread across the globe with a massive toll on human health with infection mortality rates as high as 10% and a crippling impact on the world economy. Despite numerous advances there remains an urgent need for accurate and rapid point-of-care diagnostic tests, and better therapeutic treatment options. To contribute chemically distinct, non-protein-based affinity reagents, we report here the identification of modified DNA-based aptamers that selectively bind to the S1, S2, or receptor-binding domain of SARS-CoV-2 spike protein. Several aptamers inhibit the binding of the spike protein to its cell-surface receptor ACE2 and neutralize authentic SARS-CoV-2 virus in vitro, including all variants of concern. With a high degree of nuclease resistance imparted by the base modifications, these reagents represent a new class of molecules with potential for further development as diagnostics or therapeutics.

2.
J Immunol Methods ; 511: 113380, 2022 Oct 25.
Article in English | MEDLINE | ID: covidwho-2086445

ABSTRACT

The SARS-CoV-2 pandemic continues despite the presence of effective vaccines, and novel vaccine approaches may help to reduce viral spread and associated COVID-19 disease. Current vaccine administration modalities are based on systemic needle-administered immunisation which may be suboptimal for mucosal pathogens. Here we demonstrate in a mouse model that small-volume intranasal administration of purified spike (S) protein in the adjuvant polyethylenemine (PEI) elicits robust antibody responses with modest systemic neutralisation activity. Further, we test a heterologous intranasal immunisation regimen, priming with S and boosting with RBD-Fc. Our data identify small volume PEI adjuvantation as a novel platform with potential for protective mucosal vaccine development.

3.
International Journal of Mathematical Education in Science and Technology ; 53(3):717-727, 2022.
Article in English | ProQuest Central | ID: covidwho-1984614

ABSTRACT

Many mathematics students require support for learning challenges, such as those invoked by mathematics anxiety. Support for these learning challenges is imparted through personal interactions between the student and the instructor, support staff or their peers. The online delivery of mathematics classes and support meetings reduced the quality of the interactions compared to face-to-face interactions. This article presents an alternative approach used to support students with learning challenges in a virtual learning environment. The approach reported was used in a four week online preparatory mathematics subject. Most of the students were mature age, some years out of formal mathematics education, and low in confidence. In preparing the modules the nature of the subject and the cohort was considered and additional content called Checkpoints was added. The Checkpoint pages were designed to alleviate the learning challenges the students faced by including signposting, supporting positive dispositions, providing alternative learning strategies, and sharing assessment strategies. Feedback showed students engaged with the Checkpoints and found them helpful, leading the students to reflect on their learning. The checkpoints also 'chunked' the math content, resulting in a 'nice break', and provided students with reassurance they were on-track.

4.
Lancet Microbe ; 3(1): e21-e31, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1915218

ABSTRACT

BACKGROUND: Previous infection with SARS-CoV-2 affects the immune response to the first dose of the SARS-CoV-2 vaccine. We aimed to compare SARS-CoV-2-specific T-cell and antibody responses in health-care workers with and without previous SARS-CoV-2 infection following a single dose of the BNT162b2 (tozinameran; Pfizer-BioNTech) mRNA vaccine. METHODS: We sampled health-care workers enrolled in the PITCH study across four hospital sites in the UK (Oxford, Liverpool, Newcastle, and Sheffield). All health-care workers aged 18 years or older consenting to participate in this prospective cohort study were included, with no exclusion criteria applied. Blood samples were collected where possible before vaccination and 28 (±7) days following one or two doses (given 3-4 weeks apart) of the BNT162b2 vaccine. Previous infection was determined by a documented SARS-CoV-2-positive RT-PCR result or the presence of positive anti-SARS-CoV-2 nucleocapsid antibodies. We measured spike-specific IgG antibodies and quantified T-cell responses by interferon-γ enzyme-linked immunospot assay in all participants where samples were available at the time of analysis, comparing SARS-CoV-2-naive individuals to those with previous infection. FINDINGS: Between Dec 9, 2020, and Feb 9, 2021, 119 SARS-CoV-2-naive and 145 previously infected health-care workers received one dose, and 25 SARS-CoV-2-naive health-care workers received two doses, of the BNT162b2 vaccine. In previously infected health-care workers, the median time from previous infection to vaccination was 268 days (IQR 232-285). At 28 days (IQR 27-33) after a single dose, the spike-specific T-cell response measured in fresh peripheral blood mononuclear cells (PBMCs) was higher in previously infected (n=76) than in infection-naive (n=45) health-care workers (median 284 [IQR 150-461] vs 55 [IQR 24-132] spot-forming units [SFUs] per 106 PBMCs; p<0·0001). With cryopreserved PBMCs, the T-cell response in previously infected individuals (n=52) after one vaccine dose was equivalent to that of infection-naive individuals (n=19) after receiving two vaccine doses (median 152 [IQR 119-275] vs 162 [104-258] SFUs/106 PBMCs; p=1·00). Anti-spike IgG antibody responses following a single dose in 142 previously infected health-care workers (median 270 373 [IQR 203 461-535 188] antibody units [AU] per mL) were higher than in 111 infection-naive health-care workers following one dose (35 001 [17 099-55 341] AU/mL; p<0·0001) and higher than in 25 infection-naive individuals given two doses (180 904 [108 221-242 467] AU/mL; p<0·0001). INTERPRETATION: A single dose of the BNT162b2 vaccine is likely to provide greater protection against SARS-CoV-2 infection in individuals with previous SARS-CoV-2 infection, than in SARS-CoV-2-naive individuals, including against variants of concern. Future studies should determine the additional benefit of a second dose on the magnitude and durability of immune responses in individuals vaccinated following infection, alongside evaluation of the impact of extending the interval between vaccine doses. FUNDING: UK Department of Health and Social Care, and UK Coronavirus Immunology Consortium.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Leukocytes, Mononuclear , Prospective Studies , T-Lymphocytes , United Kingdom/epidemiology , Vaccines, Synthetic
5.
Commun Med (Lond) ; 2: 36, 2022.
Article in English | MEDLINE | ID: covidwho-1860433

ABSTRACT

Background: Evaluation of susceptibility to emerging SARS-CoV-2 variants of concern (VOC) requires rapid screening tests for neutralising antibodies which provide protection. Methods: Firstly, we developed a receptor-binding domain-specific haemagglutination test (HAT) to Wuhan and VOC (alpha, beta, gamma and delta) and compared to pseudotype, microneutralisation and virus neutralisation assays in 835 convalescent sera. Secondly, we investigated the antibody response using the HAT after two doses of mRNA (BNT162b2) vaccination. Sera were collected at baseline, three weeks after the first and second vaccinations from older (80-99 years, n = 89) and younger adults (23-77 years, n = 310) and compared to convalescent sera from naturally infected individuals (1-89 years, n = 307). Results: Here we show that HAT antibodies highly correlated with neutralising antibodies (R = 0.72-0.88) in convalescent sera. Home-dwelling older individuals have significantly lower antibodies to the Wuhan strain after one and two doses of BNT162b2 vaccine than younger adult vaccinees and naturally infected individuals. Moverover, a second vaccine dose boosts and broadens the antibody repertoire to VOC in naïve, not previously infected older and younger adults. Most (72-76%) older adults respond after two vaccinations to alpha and delta, but only 58-62% to beta and gamma, compared to 96-97% of younger vaccinees and 68-76% of infected individuals. Previously infected older individuals have, similarly to younger adults, high antibody titres after one vaccination. Conclusions: Overall, HAT provides a surrogate marker for neutralising antibodies, which can be used as a simple inexpensive, rapid test. HAT can be rapidly adaptable to emerging VOC for large-scale evaluation of potentially decreasing vaccine effectiveness.

8.
Front Immunol ; 12: 809244, 2021.
Article in English | MEDLINE | ID: covidwho-1635518

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new beta coronavirus that emerged at the end of 2019 in the Hubei province of China. SARS-CoV-2 causes coronavirus disease 2019 (COVID-19) and was declared a pandemic by the World Health Organization (WHO) on 11 March 2020. Herd or community immunity has been proposed as a strategy to protect the vulnerable, and can be established through immunity from past infection or vaccination. Whether SARS-CoV-2 infection results in the development of a reservoir of resilient memory cells is under investigation. Vaccines have been developed at an unprecedented rate and 7 408 870 760 vaccine doses have been administered worldwide. Recently emerged SARS-CoV-2 variants are more transmissible with a reduced sensitivity to immune mechanisms. This is due to the presence of amino acid substitutions in the spike protein, which confer a selective advantage. The emergence of variants therefore poses a risk for vaccine effectiveness and long-term immunity, and it is crucial therefore to determine the effectiveness of vaccines against currently circulating variants. Here we review both SARS-CoV-2-induced host immune activation and vaccine-induced immune responses, highlighting the responses of immune memory cells that are key indicators of host immunity. We further discuss how variants emerge and the currently circulating variants of concern (VOC), with particular focus on implications for vaccine effectiveness. Finally, we describe new antibody treatments and future vaccine approaches that will be important as we navigate through the COVID-19 pandemic.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Immunologic Memory , Pandemics/prevention & control , SARS-CoV-2/immunology , COVID-19/genetics , COVID-19 Vaccines/genetics , COVID-19 Vaccines/therapeutic use , Humans , SARS-CoV-2/genetics
9.
Elife ; 112022 01 20.
Article in English | MEDLINE | ID: covidwho-1634530

ABSTRACT

Despite an unprecedented global research effort on SARS-CoV-2, early replication events remain poorly understood. Given the clinical importance of emergent viral variants with increased transmission, there is an urgent need to understand the early stages of viral replication and transcription. We used single-molecule fluorescence in situ hybridisation (smFISH) to quantify positive sense RNA genomes with 95% detection efficiency, while simultaneously visualising negative sense genomes, subgenomic RNAs, and viral proteins. Our absolute quantification of viral RNAs and replication factories revealed that SARS-CoV-2 genomic RNA is long-lived after entry, suggesting that it avoids degradation by cellular nucleases. Moreover, we observed that SARS-CoV-2 replication is highly variable between cells, with only a small cell population displaying high burden of viral RNA. Unexpectedly, the B.1.1.7 variant, first identified in the UK, exhibits significantly slower replication kinetics than the Victoria strain, suggesting a novel mechanism contributing to its higher transmissibility with important clinical implications.


Subject(s)
COVID-19/virology , RNA, Viral/metabolism , SARS-CoV-2/pathogenicity , Animals , Chlorocebus aethiops/genetics , RNA/metabolism , RNA, Viral/genetics , SARS-CoV-2/genetics , Vero Cells , Viral Proteins/metabolism , Virus Replication/physiology
10.
Nat Immunol ; 23(1): 50-61, 2022 01.
Article in English | MEDLINE | ID: covidwho-1545628

ABSTRACT

NP105-113-B*07:02-specific CD8+ T cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP105-113-B*07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). We demonstrated a beneficial association of NP105-113-B*07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function. Broad immune memory pools were narrowed postinfection but NP105-113-B*07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. Our data show that NP105-113-B*07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design.


Subject(s)
HLA-B7 Antigen/immunology , Immunodominant Epitopes/immunology , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Aged , Amino Acid Sequence , Antibodies, Viral/immunology , Antibody Affinity/immunology , COVID-19/immunology , COVID-19/pathology , Cell Line, Transformed , Female , Gene Expression Profiling , Humans , Immunologic Memory/immunology , Male , Middle Aged , Receptors, Antigen, T-Cell/immunology , Severity of Illness Index , Vaccinia virus/genetics , Vaccinia virus/immunology , Vaccinia virus/metabolism
11.
Thorax ; 77(3): 292-294, 2022 03.
Article in English | MEDLINE | ID: covidwho-1515322

ABSTRACT

Pulmonary function tests are fundamental to the diagnosis and monitoring of respiratory diseases. There is uncertainty around whether potentially infectious aerosols are produced during testing and there are limited data on mitigation strategies to reduce risk to staff. Healthy volunteers and patients with lung disease underwent standardised spirometry, peak flow and FENO assessments. Aerosol number concentration was sampled using an aerodynamic particle sizer and an optical particle sizer. Measured aerosol concentrations were compared with breathing, speaking and voluntary coughing. Mitigation strategies included a standard viral filter and a full-face mask normally used for exercise testing (to mitigate induced coughing). 147 measures were collected from 33 healthy volunteers and 10 patients with lung disease. The aerosol number concentration was highest in coughs (1.45-1.61 particles/cm3), followed by unfiltered peak flow (0.37-0.76 particles/cm3). Addition of a viral filter to peak flow reduced aerosol emission by a factor of 10 without affecting the results. On average, coughs produced 22 times more aerosols than standard spirometry (with filter) in patients and 56 times more aerosols in healthy volunteers. FENO measurement produced negligible aerosols. Cardiopulmonary exercise test (CPET) masks reduced aerosol emission when breathing, speaking and coughing significantly. Lung function testing produces less aerosols than voluntary coughing. CPET masks may be used to reduce aerosol emission from induced coughing. Standard viral filters are sufficiently effective to allow guidelines to remove lung function testing from the list of aerosol-generating procedures.


Subject(s)
Lung , Masks , Aerosols , Healthy Volunteers , Humans , Particle Size , Respiratory Function Tests
12.
Theranostics ; 12(1): 1-17, 2022.
Article in English | MEDLINE | ID: covidwho-1512993

ABSTRACT

Background: Administration of potent anti-receptor-binding domain (RBD) monoclonal antibodies has been shown to curtail viral shedding and reduce hospitalization in patients with SARS-CoV-2 infection. However, the structure-function analysis of potent human anti-RBD monoclonal antibodies and its links to the formulation of antibody cocktails remains largely elusive. Methods: Previously, we isolated a panel of neutralizing anti-RBD monoclonal antibodies from convalescent patients and showed their neutralization efficacy in vitro. Here, we elucidate the mechanism of action of antibodies and dissect antibodies at the epitope level, which leads to a formation of a potent antibody cocktail. Results: We found that representative antibodies which target non-overlapping epitopes are effective against wild type virus and recently emerging variants of concern, whilst being encoded by antibody genes with few somatic mutations. Neutralization is associated with the inhibition of binding of viral RBD to ACE2 and possibly of the subsequent fusion process. Structural analysis of representative antibodies, by cryo-electron microscopy and crystallography, reveals that they have some unique aspects that are of potential value while sharing some features in common with previously reported neutralizing monoclonal antibodies. For instance, one has a common VH 3-53 public variable region yet is unusually resilient to mutation at residue 501 of the RBD. We evaluate the in vivo efficacy of an antibody cocktail consisting of two potent non-competing anti-RBD antibodies in a Syrian hamster model. We demonstrate that the cocktail prevents weight loss, reduces lung viral load and attenuates pulmonary inflammation in hamsters in both prophylactic and therapeutic settings. Although neutralization of one of these antibodies is abrogated by the mutations of variant B.1.351, it is also possible to produce a bi-valent cocktail of antibodies both of which are resilient to variants B.1.1.7, B.1.351 and B.1.617.2. Conclusions: These findings support the up-to-date and rational design of an anti-RBD antibody cocktail as a therapeutic candidate against COVID-19.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , COVID-19/drug therapy , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Binding Sites , Binding, Competitive , COVID-19/virology , Cricetinae , Cryoelectron Microscopy , Crystallography, X-Ray , Dogs , Epitopes , Female , Humans , Madin Darby Canine Kidney Cells , Neutralization Tests , Protein Domains , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
13.
Thorax ; 77(3): 276-282, 2022 03.
Article in English | MEDLINE | ID: covidwho-1504039

ABSTRACT

INTRODUCTION: continuous positive airway pressure (CPAP) and high-flow nasal oxygen (HFNO) provide enhanced oxygen delivery and respiratory support for patients with severe COVID-19. CPAP and HFNO are currently designated as aerosol-generating procedures despite limited high-quality experimental data. We aimed to characterise aerosol emission from HFNO and CPAP and compare with breathing, speaking and coughing. MATERIALS AND METHODS: Healthy volunteers were recruited to breathe, speak and cough in ultra-clean, laminar flow theatres followed by using CPAP and HFNO. Aerosol emission was measured using two discrete methodologies, simultaneously. Hospitalised patients with COVID-19 had cough recorded using the same methodology on the infectious diseases ward. RESULTS: In healthy volunteers (n=25 subjects; 531 measures), CPAP (with exhalation port filter) produced less aerosol than breathing, speaking and coughing (even with large >50 L/min face mask leaks). Coughing was associated with the highest aerosol emissions of any recorded activity. HFNO was associated with aerosol emission, however, this was from the machine. Generated particles were small (<1 µm), passing from the machine through the patient and to the detector without coalescence with respiratory aerosol, thereby unlikely to carry viral particles. More aerosol was generated in cough from patients with COVID-19 (n=8) than volunteers. CONCLUSIONS: In healthy volunteers, standard non-humidified CPAP is associated with less aerosol emission than breathing, speaking or coughing. Aerosol emission from the respiratory tract does not appear to be increased by HFNO. Although direct comparisons are complex, cough appears to be the main aerosol-generating risk out of all measured activities.


Subject(s)
COVID-19 , Aerosols , Humans , Oxygen , Respiratory System , SARS-CoV-2
14.
Adv Sci (Weinh) ; 9(1): e2102181, 2022 01.
Article in English | MEDLINE | ID: covidwho-1487434

ABSTRACT

Combinatorial antibody libraries not only effectively reduce antibody discovery to a numbers game, but enable documentation of the history of antibody responses in an individual. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has prompted a wider application of this technology to meet the public health challenge of pandemic threats in the modern era. Herein, a combinatorial human antibody library constructed 20 years before the coronavirus disease 2019 (COVID-19) pandemic is used to discover three highly potent antibodies that selectively bind SARS-CoV-2 spike protein and neutralize authentic SARS-CoV-2 virus. Compared to neutralizing antibodies from COVID-19 patients with generally low somatic hypermutation (SHM), these three antibodies contain over 13-22 SHMs, many of which are involved in specific interactions in their crystal structures with SARS-CoV-2 spike receptor binding domain. The identification of these somatically mutated antibodies in a pre-pandemic library raises intriguing questions about the origin and evolution of these antibodies with respect to their reactivity with SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/immunology , Binding Sites , Binding, Competitive , Cell Surface Display Techniques , Chlorocebus aethiops , HEK293 Cells , Humans , Peptide Library , SARS-CoV-2/drug effects , Somatic Hypermutation, Immunoglobulin , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
15.
R Soc Open Sci ; 8(9): 211016, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1459097

ABSTRACT

Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in the fluid has important uses in biotechnology, and is integral to many point-of-care SARS-CoV-2 diagnostics. Sandwich enzyme-linked immunosorbent assays (ELISAs) are a sensitive, well-established method of measuring antigens in solutions. They use one ligand to capture and the other ligand to detect the target analyte. Detection is commonly achieved using colorimetric readout obtained upon the reaction of a substrate with HRP-conjugated secondary ligand. Nanobodies, the VHH domain of camelid antibodies, have expanded the repertoire of molecules used in antigen detection. Nanobodies' high affinity for target antigens, their compact structure, their high stability and ease of production has driven research into their use as diagnostic reagents. Guided by a structural understanding of epitopes on the receptor-binding domain of the SARS-CoV-2 Spike protein, we investigated various combinations of engineered nanobodies in a sandwich ELISA to detect the Spike protein of SARS-CoV-2. We have identified an optimal combination of nanobodies. These were selectively functionalized to further improve antigen capture, enabling the measurement of sub-picomolar amounts of SARS-CoV-2 Spike protein in solution. With this combination, the routine detection limit in samples inactivated by heat and detergent corresponded to less than seven focus-forming units of infectious SARS-CoV-2.

16.
Nat Commun ; 12(1): 5469, 2021 09 22.
Article in English | MEDLINE | ID: covidwho-1434103

ABSTRACT

SARS-CoV-2 remains a global threat to human health particularly as escape mutants emerge. There is an unmet need for effective treatments against COVID-19 for which neutralizing single domain antibodies (nanobodies) have significant potential. Their small size and stability mean that nanobodies are compatible with respiratory administration. We report four nanobodies (C5, H3, C1, F2) engineered as homotrimers with pmolar affinity for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Crystal structures show C5 and H3 overlap the ACE2 epitope, whilst C1 and F2 bind to a different epitope. Cryo Electron Microscopy shows C5 binding results in an all down arrangement of the Spike protein. C1, H3 and C5 all neutralize the Victoria strain, and the highly transmissible Alpha (B.1.1.7 first identified in Kent, UK) strain and C1 also neutralizes the Beta (B.1.35, first identified in South Africa). Administration of C5-trimer via the respiratory route showed potent therapeutic efficacy in the Syrian hamster model of COVID-19 and separately, effective prophylaxis. The molecule was similarly potent by intraperitoneal injection.


Subject(s)
Antibodies, Neutralizing/pharmacology , COVID-19/drug therapy , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Administration, Intranasal , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Cryoelectron Microscopy , Crystallography, X-Ray , Disease Models, Animal , Dose-Response Relationship, Immunologic , Epitopes/chemistry , Epitopes/metabolism , Female , Male , Mesocricetus , Neutralization Tests , SARS-CoV-2/drug effects , Single-Domain Antibodies/administration & dosage , Single-Domain Antibodies/immunology , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/chemistry
18.
Nat Commun ; 12(1): 5061, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1361634

ABSTRACT

The extent to which immune responses to natural infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and immunization with vaccines protect against variants of concern (VOC) is of increasing importance. Accordingly, here we analyse antibodies and T cells of a recently vaccinated, UK cohort, alongside those recovering from natural infection in early 2020. We show that neutralization of the VOC compared to a reference isolate of the original circulating lineage, B, is reduced: more profoundly against B.1.351 than for B.1.1.7, and in responses to infection or a single dose of vaccine than to a second dose of vaccine. Importantly, high magnitude T cell responses are generated after two vaccine doses, with the majority of the T cell response directed against epitopes that are conserved between the prototype isolate B and the VOC. Vaccination is required to generate high potency immune responses to protect against these and other emergent variants.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Monoclonal/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/metabolism , Antibodies, Viral/blood , Antibodies, Viral/immunology , Carrier Proteins , Epitopes , Humans , Immunity , SARS-CoV-2/drug effects , T-Lymphocytes/immunology
19.
Nat Commun ; 12(1): 4629, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1333939

ABSTRACT

Since the outbreak of the SARS-CoV-2 pandemic, there have been intense structural studies on purified viral components and inactivated viruses. However, structural and ultrastructural evidence on how the SARS-CoV-2 infection progresses in the native cellular context is scarce, and there is a lack of comprehensive knowledge on the SARS-CoV-2 replicative cycle. To correlate cytopathic events induced by SARS-CoV-2 with virus replication processes in frozen-hydrated cells, we established a unique multi-modal, multi-scale cryo-correlative platform to image SARS-CoV-2 infection in Vero cells. This platform combines serial cryoFIB/SEM volume imaging and soft X-ray cryo-tomography with cell lamellae-based cryo-electron tomography (cryoET) and subtomogram averaging. Here we report critical SARS-CoV-2 structural events - e.g. viral RNA transport portals, virus assembly intermediates, virus egress pathway, and native virus spike structures, in the context of whole-cell volumes revealing drastic cytppathic changes. This integrated approach allows a holistic view of SARS-CoV-2 infection, from the whole cell to individual molecules.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Virus Assembly/immunology , Virus Release/immunology , Virus Replication/immunology , Animals , COVID-19/epidemiology , COVID-19/virology , Chlorocebus aethiops , Cryoelectron Microscopy , Electron Microscope Tomography , Humans , Pandemics/prevention & control , SARS-CoV-2/physiology , SARS-CoV-2/ultrastructure , Vero Cells , Virus Assembly/physiology , Virus Release/physiology , Virus Replication/physiology
20.
Cell Rep ; 35(3): 109020, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-1182447

ABSTRACT

COVID-19, caused by the novel coronavirus SARS-CoV-2, is a global health issue with more than 2 million fatalities to date. Viral replication is shaped by the cellular microenvironment, and one important factor to consider is oxygen tension, in which hypoxia inducible factor (HIF) regulates transcriptional responses to hypoxia. SARS-CoV-2 primarily infects cells of the respiratory tract, entering via its spike glycoprotein binding to angiotensin-converting enzyme 2 (ACE2). We demonstrate that hypoxia and the HIF prolyl hydroxylase inhibitor Roxadustat reduce ACE2 expression and inhibit SARS-CoV-2 entry and replication in lung epithelial cells via an HIF-1α-dependent pathway. Hypoxia and Roxadustat inhibit SARS-CoV-2 RNA replication, showing that post-entry steps in the viral life cycle are oxygen sensitive. This study highlights the importance of HIF signaling in regulating multiple aspects of SARS-CoV-2 infection and raises the potential use of HIF prolyl hydroxylase inhibitors in the prevention or treatment of COVID-19.


Subject(s)
COVID-19/metabolism , Epithelial Cells/metabolism , Glycine/analogs & derivatives , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Isoquinolines/pharmacology , Lung/metabolism , SARS-CoV-2/physiology , Virus Internalization/drug effects , Virus Replication/drug effects , A549 Cells , Animals , COVID-19/drug therapy , COVID-19/pathology , Caco-2 Cells , Cell Hypoxia/drug effects , Chlorocebus aethiops , Epithelial Cells/virology , Glycine/pharmacology , Humans , Lung/virology , Mice , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL