Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
Environ Res ; 216(Pt 1): 114480, 2023 01 01.
Article in English | MEDLINE | ID: covidwho-2061126


A research-based course was developed to investigate the legacy of soil lead (Pb) pollution in Los Angeles, California. During the course, undergraduate and graduate students collected a total of 270 soil samples for analyses of metal (loid) concentrations in different land-use types (residential, park, and school). Residential soils had significantly higher Pb concentrations than other land uses (p < 0.01) exceeding the California recommended safety level for soil Pb (80 mg/kg) at the highest frequency (64% of samples), followed by schools (42%) and parks (6.0%). Soil Pb from all 87 census block groups was correlated with battery recycling plant and railroad proximity as geospatial indicators of childhood Pb exposure risk. Meanwhile, census block groups with higher Pb levels were correlated with higher percentages of the following population: those without health insurance, without college degrees, with a lower median household income and income below the poverty line, and ethnic and racial minorities (r = -0.46 to 0.59, p < 0.05). Principal component regression models significantly improved soil Pb estimation over correlation analysis by incorporating sociodemographic, economic, and geospatial risk factors for Pb exposure (R2 = 0.58, p < 0.05). This work provides new insights into how topsoil Pb prevails in various land-use types and their co-occurring sociodemographic, economic, and geospatial risk factors, indicating the need for multi-scalar assessment across urban land uses.

Metals, Heavy , Soil Pollutants , Humans , Soil , Soil Pollutants/analysis , Lead/analysis , Los Angeles , Environmental Monitoring , Metals, Heavy/analysis , Risk Assessment , China
Frontiers in Marine Science ; 2021.
Article in English | ProQuest Central | ID: covidwho-1218485


The COVID-19 pandemic halted human activities globally in multiple sectors including tourism. As a result, nations with heavy tourism, such as Belize, experienced improvements in water quality. Remote sensing technologies can detect impacts of “anthropauses” on coastal water quality. In this study, MODIS satellite data were employed along the Belizean coast to investigate impacts of the COVID-19 shutdown on water quality. The attenuation coefficient at 490 nm, Kd(490), was used as an indicator of water quality, with a lower Kd(490) indicating increased water clarity. Four Coastal Management Zones were characterized by marine traffic as high traffic areas (HTAs) and two as low traffic areas (LTAs). Monthly composites for two periods, 2002-2019 (baseline) and 2020 were examined for Kd(490). For months prior to the COVID-19 shutdown in Belize, there was generally no significant difference in Kd(490) (p>0.05) between 2020 and baseline period in HTAs and LTAs. Through the shutdown, Kd was lower in 2020 at HTAs, but not for LTAs. At the LTAs, the Kd(490)s observed in 2020 were similar to previous years through October. In November, an unusually active hurricane season in 2020 was associated with decreased water clarity along the entire coast of Belize. This study provides proof of concept that satellite-based monitoring of water quality can complement in situ data and provide evidence of significant water quality improvements due to the COVID-19 shutdown, likely due to reduced marine traffic. However, these improvements were no longer observed following an active hurricane season.