Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Lancet Microbe ; 1(7): e300-e307, 2020 11.
Article in English | MEDLINE | ID: covidwho-1795951

ABSTRACT

BACKGROUND: Access to rapid diagnosis is key to the control and management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Laboratory RT-PCR testing is the current standard of care but usually requires a centralised laboratory and significant infrastructure. We describe our diagnostic accuracy assessment of a novel, rapid point-of-care real time RT-PCR CovidNudge test, which requires no laboratory handling or sample pre-processing. METHODS: Between April and May, 2020, we obtained two nasopharyngeal swab samples from individuals in three hospitals in London and Oxford (UK). Samples were collected from three groups: self-referred health-care workers with suspected COVID-19; patients attending emergency departments with suspected COVID-19; and hospital inpatient admissions with or without suspected COVID-19. For the CovidNudge test, nasopharyngeal swabs were inserted directly into a cartridge which contains all reagents and components required for RT-PCR reactions, including multiple technical replicates of seven SARS-CoV-2 gene targets (rdrp1, rdrp2, e-gene, n-gene, n1, n2 and n3) and human ribonuclease P (RNaseP) as sample adequacy control. Swab samples were tested in parallel using the CovidNudge platform, and with standard laboratory RT-PCR using swabs in viral transport medium for processing in a central laboratory. The primary analysis was to compare the sensitivity and specificity of the point-of-care CovidNudge test with laboratory-based testing. FINDINGS: We obtained 386 paired samples: 280 (73%) from self-referred health-care workers, 15 (4%) from patients in the emergency department, and 91 (23%) hospital inpatient admissions. Of the 386 paired samples, 67 tested positive on the CovidNudge point-of-care platform and 71 with standard laboratory RT-PCR. The overall sensitivity of the point-of-care test compared with laboratory-based testing was 94% (95% CI 86-98) with an overall specificity of 100% (99-100). The sensitivity of the test varied by group (self-referred healthcare workers 94% [95% CI 85-98]; patients in the emergency department 100% [48-100]; and hospital inpatient admissions 100% [29-100]). Specificity was consistent between groups (self-referred health-care workers 100% [95% CI 98-100]; patients in the emergency department 100% [69-100]; and hospital inpatient admissions 100% [96-100]). Point of care testing performance was similar during a period of high background prevalence of laboratory positive tests (25% [95% 20-31] in April, 2020) and low prevalence (3% [95% 1-9] in inpatient screening). Amplification of viral nucleocapsid (n1, n2, and n3) and envelope protein gene (e-gene) were most sensitive for detection of spiked SARS-CoV-2 RNA. INTERPRETATION: The CovidNudge platform was a sensitive, specific, and rapid point of care test for the presence of SARS-CoV-2 without laboratory handling or sample pre-processing. The device, which has been implemented in UK hospitals since May, 2020, could enable rapid decisions for clinical care and testing programmes. FUNDING: National Institute of Health Research (NIHR) Imperial Biomedical Research Centre, NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Oxford University in partnership with Public Health England, NIHR Biomedical Research Centre Oxford, and DnaNudge.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Point-of-Care Testing , RNA, Viral/genetics , Sensitivity and Specificity
2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329063

ABSTRACT

Background: We evaluated the use of baricitinib, a Janus kinase (JAK) 1/2 inhibitor, for the treatment of patients admitted to hospital because of COVID-19. Methods: This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple possible treatments in patients hospitalised for COVID-19. Eligible and consenting patients were randomly allocated (1:1) to either usual standard of care alone (usual care group) or usual care plus baricitinib 4 mg once daily by mouth for 10 days or until discharge if sooner (baricitinib group). The primary outcome was 28-day mortality assessed in the intention-to-treat population. A meta-analysis was conducted that included the results from the RECOVERY trial and all previous randomised controlled trials of baricitinib or other JAK inhibitor in patients hospitalised with COVID-19. Findings: Between 2 February 2021 and 29 December 2021, 8156 patients were randomly allocated to receive usual care plus baricitinib versus usual care alone. At randomisation, 95% of patients were receiving corticosteroids and 23% receiving tocilizumab (with planned use within the next 24 hours recorded for a further 9%). Overall, 513 (12%) of 4148 patients allocated to baricitinib versus 546 (14%) of 4008 patients allocated to usual care died within 28 days (age-adjusted rate ratio 0.87;95% CI 0.77-0.98;p=0.026). This 13% proportional reduction in mortality was somewhat smaller than that seen in a meta-analysis of 8 previous trials of a JAK inhibitor (involving 3732 patients and 425 deaths) in which allocation to a JAK inhibitor was associated with a 43% proportional reduction in mortality (rate ratio 0.57;95% CI 0.45-0.72). Including the results from RECOVERY into an updated meta-analysis of all 9 completed trials (involving 11,888 randomised patients and 1484 deaths) allocation to baricitinib or other JAK inhibitor was associated with a 20% proportional reduction in mortality (rate ratio 0.80;95% CI 0.71-0.89;p<0.001). In RECOVERY, there was no significant excess in death or infection due to non-COVID-19 causes and no excess of thrombosis, or other safety outcomes. Interpretation: In patients hospitalised for COVID-19, baricitinib significantly reduced the risk of death but the size of benefit was somewhat smaller than that suggested by previous trials. The total randomised evidence to date suggests that JAK inhibitors (chiefly baricitinib) reduce mortality in patients hospitalised for COVID-19 by about one-fifth.

3.
Clin Infect Dis ; 74(7): 1208-1219, 2022 Apr 09.
Article in English | MEDLINE | ID: covidwho-1704072

ABSTRACT

BACKGROUND: Natural and vaccine-induced immunity will play a key role in controlling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. SARS-CoV-2 variants have the potential to evade natural and vaccine-induced immunity. METHODS: In a longitudinal cohort study of healthcare workers (HCWs) in Oxfordshire, United Kingdom, we investigated the protection from symptomatic and asymptomatic polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection conferred by vaccination (Pfizer-BioNTech BNT162b2, Oxford-AstraZeneca ChAdOx1 nCOV-19) and prior infection (determined using anti-spike antibody status), using Poisson regression adjusted for age, sex, temporal changes in incidence and role. We estimated protection conferred after 1 versus 2 vaccinations and from infections with the B.1.1.7 variant identified using whole genome sequencing. RESULTS: In total, 13 109 HCWs participated; 8285 received the Pfizer-BioNTech vaccine (1407 two doses), and 2738 the Oxford-AstraZeneca vaccine (49 two doses). Compared to unvaccinated seronegative HCWs, natural immunity and 2 vaccination doses provided similar protection against symptomatic infection: no HCW vaccinated twice had symptomatic infection, and incidence was 98% lower in seropositive HCWs (adjusted incidence rate ratio 0.02 [95% confidence interval {CI} < .01-.18]). Two vaccine doses or seropositivity reduced the incidence of any PCR-positive result with or without symptoms by 90% (0.10 [95% CI .02-.38]) and 85% (0.15 [95% CI .08-.26]), respectively. Single-dose vaccination reduced the incidence of symptomatic infection by 67% (0.33 [95% CI .21-.52]) and any PCR-positive result by 64% (0.36 [95% CI .26-.50]). There was no evidence of differences in immunity induced by natural infection and vaccination for infections with S-gene target failure and B.1.1.7. CONCLUSIONS: Natural infection resulting in detectable anti-spike antibodies and 2 vaccine doses both provide robust protection against SARS-CoV-2 infection, including against the B.1.1.7 variant.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Cohort Studies , Health Personnel , Humans , Immunoglobulins , Incidence , Longitudinal Studies , Vaccination
4.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-305590

ABSTRACT

Background: Laboratory diagnosis of SARS-CoV-2 infection (the cause of COVID-19) uses PCR to detect viral RNA (vRNA) in respiratory samples. SARS-CoV-2 RNA has also been detected in other sample types, but there is limited understanding of the clinical or laboratory significance of its detection in blood. Methods: We undertook a systematic literature review to assimilate the evidence for the frequency of vRNA in blood, and to identify associated clinical characteristics. We performed RT-PCR in serum samples from a UK clinical cohort of acute and convalescent COVID-19 cases (n=212), together with convalescent plasma samples collected by NHS Blood and Transplant (NHSBT) (n=462 additional samples). To determine whether PCR-positive blood samples could pose an infection risk, we attempted virus isolation from a subset of RNA-positive samples. Results: We identified 28 relevant studies, reporting SARS-CoV-2 RNA in 0-76% of blood samples;pooled estimate 10% (95%CI 5-18%). Among serum samples from our clinical cohort, 27/212 (12.7%) had SARS-CoV-2 RNA detected by RT-PCR. RNA detection occurred in samples up to day 20 post symptom onset, and was associated with more severe disease (multivariable odds ratio 7.5). Across all samples collected ≥28 days post symptom onset, 0/494 (0%, 95%CI 0-0.7%) had vRNA detected. Among our PCR-positive samples, cycle threshold (ct) values were high (range 33.5-44.8), suggesting low vRNA copy numbers. PCR-positive sera inoculated into cell culture did not produce any cytopathic effect or yield an increase in detectable SARS-CoV-2 RNA. There was a relationship between RT-PCR negativity and the presence of total SARS-CoV-2 antibody (p=0.02). Conclusions: vRNA was detectable at low viral loads in a minority of serum samples collected in acute infection, but was not associated with infectious SARS-CoV-2 (within the limitations of the assays used). This work helps to inform biosafety precautions for handling blood products from patients with current or previous COVID-19.

5.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327455

ABSTRACT

Background T cell responses to SARS-CoV-2 following infection and vaccination are less characterised than antibody responses, due to a more complex experimental pathway. Methods We measured T cell responses in 108 healthcare workers (HCWs) in an observational cohort study, using the commercialised Oxford Immunotec T-SPOT Discovery SARS-CoV-2 assay (OI T-SPOT) and the PITCH ELISpot protocol established for academic research settings. Results Both assays detected T cell responses to SARS-CoV-2 spike, membrane and nucleocapsid proteins. Responses were significantly lower when reported by OI T-SPOT than by PITCH ELISpot. Four weeks after two doses of either Pfizer/BioNTech BNT162b or ChAdOx1 nCoV-19 AZD1222 vaccine, the responder rate was 63% for OI T-SPOT Panels1+2 (peptides representing SARS-CoV-2 spike protein excluding regions present in seasonal coronaviruses), 69% for OI T-SPOT Panel 14 (peptides representing the entire SARS-CoV-2 spike), and 94% for the PITCH ELISpot assay. The two OI T-SPOT panels correlated strongly with each other showing that either readout quantifies spike-specific T cell responses, although the correlation between the OI T-SPOT panels and the PITCH ELISpot was moderate. Conclusion The standardisation, relative scalability and longer interval between blood acquisition and processing are advantages of the commercial OI T-SPOT assay. However, the OI T-SPOT assay measures T cell responses at a significantly lower magnitude compared to the PITCH ELISpot assay, detecting T cell responses in a lower proportion of vaccinees. This has implications for the reporting of low-level T cell responses that may be observed in patient populations and for the assessment of T cell durability after vaccination.

6.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-322827

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is normally controlled by effective host immunity including innate, humoral and cellular responses. However, the trajectories and correlates of acquired immunity, and the capacity of memory responses months after infection to neutralise variants of concern - which has important public health implications - is not fully understood. To address this, we studied a cohort of 78 UK healthcare workers who presented in April to June 2020 with symptomatic PCR-confirmed infection or who tested positive during an asymptomatic screening programme and tracked virus-specific B and T cell responses longitudinally at 5-6 time points each over 6 months, prior to vaccination. We observed a highly variable range of responses, some of which - T cell interferon-gamma (IFN-γ) ELISpot, N-specific antibody waned over time across the cohort, while others (spike-specific antibody, B cell memory ELISpot) were stable. In such cohorts, antiviral antibody has been linked to protection against re-infection. We used integrative analysis and a machine-learning approach (SIMON - Sequential Iterative Modeling Over Night) to explore this heterogeneity and to identify predictors of sustained immune responses. Hierarchical clustering defined a group of high and low antibody responders, which showed stability over time regardless of clinical presentation. These antibody responses correlated with IFN-γ ELISpot measures of T cell immunity and represent a subgroup of patients with a robust trajectory for longer term immunity. Importantly, this immune-phenotype associates with higher levels of neutralising antibodies not only against the infecting (Victoria) strain but also against variants B.1.1.7 (alpha) and B.1.351 (beta). Overall memory responses to SARS-CoV-2 show distinct trajectories following early priming, that may define subsequent protection against infection and severe disease from novel variants.

7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-321742

ABSTRACT

Both natural infection with SARS-CoV-2 and immunization with a number of vaccines induce protective immunity. However, the ability of such immune responses to recognize and therefore protect against emerging variants is a matter of increasing importance. Such variants of concern (VOC) include isolates of lineage B1.1.7, first identified in the UK, and B1.351, first identified in South Africa. Our data confirm that VOC, particularly those with substitutions at residues 484 and 417 escape neutralization by antibodies directed to the ACE2-binding Class 1 and the adjacent Class 2 epitopes but are susceptible to neutralization by the generally less potent antibodies directed to Class 3 and 4 epitopes on the flanks RBD. To address this potential threat, we sampled a SARS-CoV-2 uninfected UK cohort recently vaccinated with BNT162b2 (Pfizer-BioNTech, two doses delivered 18-28 days apart), alongside a cohort naturally infected in the first wave of the epidemic in Spring 2020. We tested antibody and T cell responses against a reference isolate (VIC001) representing the original circulating lineage B and the impact of sequence variation in these two VOCs. We identified a reduction in antibody neutralization against the VOCs which was most evident in the B1.351 variant. However, the majority of the T cell response was directed against epitopes conserved across all three strains. The reduction in antibody neutralization was less marked in post-boost vaccine-induced than in naturally-induced immune responses and could be largely explained by the potency of the homotypic antibody response. However, after a single vaccination, which induced only modestly neutralizing homotypic antibody titres, neutralization against the VOCs was completely abrogated in the majority of vaccinees. These data indicate that VOCs may evade protective neutralising responses induced by prior infection, and to a lesser extent by immunization, particularly after a single vaccine, but the impact of the VOCs on T cell responses appears less marked. The results emphasize the need to generate high potency immune responses through vaccination in order to provide protection against these and other emergent variants. We observed that two doses of vaccine also induced a significant increase in binding antibodies to spike of both SARS-CoV-1 & MERS, in addition to the four common coronaviruses currently circulating in the UK. The impact of antigenic imprinting on the potency of humoral and cellular heterotypic protection generated by the next generation of variant-directed vaccines remains to be determined.

8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-321741

ABSTRACT

Both natural infection with SARS-CoV-2 and immunization with vaccines induce protective immunity. However, the extent to which such immune responses protect against emerging variants is of increasing importance. Such variants of concern (VOC) include isolates of lineage B.1.1.7, first identified in the UK, and B.1.351, first identified in South Africa. Our data confirm that VOC, particularly those with substitutions at residues 484 and 417, escape neutralization by antibodies directed to the ACE2-binding Class 1 and the adjacent Class 2 epitopes but are susceptible to neutralization by the generally less potent antibodies directed to Class 3 and 4 epitopes on the flanks of the receptor-binding domain. To address the potential threat posed by VOC, we sampled a SARS-CoV-2 uninfected UK cohort recently vaccinated with BNT162b2 (Pfizer-BioNTech, two doses delivered 18-28 days apart), alongside a cohort sampled in the early convalescent stages after natural infection in the first wave of the pandemic in Spring 2020. We tested antibody and T cell responses against a reference isolate of the original circulating lineage, B, and the impact of sequence variation in the B.1.1.7 and B.1.351 VOC. Neutralization of the VOC compared to B isolate was reduced, and this was most evident for the B.1.351 isolate. This reduction in antibody neutralization was less marked in post-boost vaccine-induced responses compared to naturally induced immune responses and could be largely explained by the potency of the homotypic antibody response. After a single vaccination, which induced only modestly neutralizing homotypic antibody titres, neutralization against the VOC was completely abrogated in the majority of vaccinees. Importantly, high magnitude T cell responses were generated after two vaccine doses, with the majority of the T cell response directed against epitopes that are conserved between the prototype isolate B and the VOC. These data indicate that VOC may evade protective neutralizing responses induced by prior infection, and to a lesser extent by immunization, particularly after a single vaccine dose, but the impact of the VOC on T cell responses appears less marked. The results emphasize the need to generate high potency immune responses through vaccination in order to provide protection against these and other emergent variants.

9.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-318857

ABSTRACT

Extension of the interval between vaccine doses for the BNT162b2 mRNA vaccine was introduced in the UK to accelerate population coverage with a single dose. In a study of 503 healthcare workers, we show that after priming following the first vaccine there is a marked decline in SARS-CoV-2 neutralizing antibody (NAb) levels, but, in contrast, a sustained T cell response to spike protein. This divergent immune profile was accompanied by robust protection from infection over this period from the circulating alpha (B.1.1.7) variant. Importantly, following the second vaccine dose, NAb levels were higher after the extended dosing interval (6-14 weeks) compared to the conventional 3-4 week regimen, accompanied by a clear enrichment of CD4+ T cells expressing IL2. These data on dynamic cellular and humoral responses indicate that extension of the dosing interval is an effective, immunogenic protocol and that antiviral T cell responses are a potential mechanism of protection.Trial Registration Details: PITCH is a sub-study of the SIREN study which is registered with ISRCTN, number ISRCTN11041050,Funding Information: This work was funded by the UK Department of Health and Social Care as part of the PITCH (Protective Immunity from T cells to Covid-19 in Health workers) Consortium, with contributions from UKRI/NIHR through the UK Coronavirus Immunology Consortium (UK-CIC), the Huo Family Foundation and The National Institute for Health Research (UKRIDHSC COVID-19 Rapid Response Rolling Call, Grant Reference Number COV19-RECPLAS).EB and PK are NIHR Senior Investigators and PK is funded by WT109965MA. SJD is funded by an NIHR Global Research Professorship (NIHR300791). TdS is funded by a Wellcome Trust Intermediate Clinical Fellowship (110058/Z/15/Z). RPP is funded by a Career Re-entry Fellowship (204721/Z/16/Z). CJAD is funded by a Wellcome Clinical Research Career Development Fellowship (211153/Z/18/Z). DS is supported by the NIHR Academic Clinical Lecturer programme in Oxford. LT is supported by the Wellcome Trust (grant number 205228/Z/16/Z) and the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Emerging and Zoonotic Infections (NIHR200907) at University of Liverpool in partnership with Public Health England (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford. DGW is supported by an NIHR Advanced Fellowship in Liverpool. LT and MC are supported by U.S. Food and Drug Administration Medical Countermeasures Initiative contract 75F40120C00085. Declaration of Interests: AJP is Chair of UK Dept. Health and Social Care’s (DHSC) Joint Committee on Vaccination & Immunisation (JCVI), but does not participate in policy decisions on COVID-19 vaccines. He is a member of the WHO’s SAGE. The views expressed in this article do not necessarily represent the views of DHSC, JCVI, or WHO. AJP is chief investigator on clinical trials of Oxford University’s COVID-19 vaccine funded by NIHR. Oxford University has entered a joint COVID-19 vaccine development partnership with AstraZeneca. Ethics Approval Statement: PITCH is a sub-study of the SIREN study which was approved by the Berkshire Research Ethics Committee, Health Research 250 Authority (IRAS ID 284460, REC reference 20/SC/0230), with PITCH recognised as a sub-study on 2 December 2020. SIREN is registered with ISRCTN (Trial ID:252 ISRCTN11041050). Some participants were recruited under aligned study protocols. In Birmingham participants were recruited under the Determining the immune response to SARS-CoV-2 infection in convalescent health care workers (COCO) study (IRAS ID: 282525). In Liverpool some participants were recruited under the “Human immune responses to acute virus infections” Study (16/NW/0170), approved by North West - Liverpool Central Research Ethics Committee on 8 March 2016, and amended on 14th September 2020 and 4th May 2021. In Oxford, participants were recruited under the GI Biobank Study 16/YH/0247, approved by the research ethics committee (REC) t Yorkshire & The Humber - Sheffield Research Ethics Committee on 29 July 2016, which has been amended for this purpose on 8 June 2020. In Sheffield, participants were recruited under the Observational Biobanking study STHObs (18/YH/0441), which was amended for this study on 10 September 2020. The study was conducted in compliance with all relevant ethical regulations for work with human participants, and according to the principles of the Declaration of Helsinki (2008) and the International Conference on Harmonization (ICH) Good Clinical Practice (GCP) guidelines. Written informed consent was obtained for all patients enrolled in the study.

10.
Euro Surveill ; 26(27)2021 07.
Article in English | MEDLINE | ID: covidwho-1577032

ABSTRACT

BackgroundInfluenza virus presents a considerable challenge to public health by causing seasonal epidemics and occasional pandemics. Nanopore metagenomic sequencing has the potential to be deployed for near-patient testing, providing rapid infection diagnosis, rationalising antimicrobial therapy, and supporting infection-control interventions.AimTo evaluate the applicability of this sequencing approach as a routine laboratory test for influenza in clinical settings.MethodsWe conducted Oxford Nanopore Technologies (Oxford, United Kingdom (UK)) metagenomic sequencing for 180 respiratory samples from a UK hospital during the 2018/19 influenza season, and compared results to routine molecular diagnostic standards (Xpert Xpress Flu/RSV assay; BioFire FilmArray Respiratory Panel 2 assay). We investigated drug resistance, genetic diversity, and nosocomial transmission using influenza sequence data.ResultsCompared to standard testing, Nanopore metagenomic sequencing was 83% (75/90) sensitive and 93% (84/90) specific for detecting influenza A viruses. Of 59 samples with haemagglutinin subtype determined, 40 were H1 and 19 H3. We identified an influenza A(H3N2) genome encoding the oseltamivir resistance S331R mutation in neuraminidase, potentially associated with an emerging distinct intra-subtype reassortant. Whole genome phylogeny refuted suspicions of a transmission cluster in a ward, but identified two other clusters that likely reflected nosocomial transmission, associated with a predominant community-circulating strain. We also detected other potentially pathogenic viruses and bacteria from the metagenome.ConclusionNanopore metagenomic sequencing can detect the emergence of novel variants and drug resistance, providing timely insights into antimicrobial stewardship and vaccine design. Full genome generation can help investigate and manage nosocomial outbreaks.


Subject(s)
Cross Infection , Influenza, Human , Nanopores , Antiviral Agents/therapeutic use , Cross Infection/diagnosis , Cross Infection/drug therapy , Drug Resistance , Drug Resistance, Viral/genetics , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/diagnosis , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Metagenome , Neuraminidase/genetics , Seasons , United Kingdom
11.
J Biol Rhythms ; 37(1): 124-129, 2022 02.
Article in English | MEDLINE | ID: covidwho-1551148

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global crisis with unprecedented challenges for public health. Vaccinations against SARS-CoV-2 have slowed the incidence of new infections and reduced disease severity. As the time of day of vaccination has been reported to influence host immune responses to multiple pathogens, we quantified the influence of SARS-CoV-2 vaccination time, vaccine type, participant age, sex, and days post-vaccination on anti-Spike antibody responses in health care workers. The magnitude of the anti-Spike antibody response is associated with the time of day of vaccination, vaccine type, participant age, sex, and days post-vaccination. These results may be relevant for optimising SARS-CoV-2 vaccine efficacy.


Subject(s)
Antibody Formation , COVID-19 , COVID-19 Vaccines , Circadian Rhythm , Health Personnel , Humans , Pandemics , SARS-CoV-2 , Vaccination
12.
Lancet Microbe ; 3(1): e21-e31, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1510521

ABSTRACT

BACKGROUND: Previous infection with SARS-CoV-2 affects the immune response to the first dose of the SARS-CoV-2 vaccine. We aimed to compare SARS-CoV-2-specific T-cell and antibody responses in health-care workers with and without previous SARS-CoV-2 infection following a single dose of the BNT162b2 (tozinameran; Pfizer-BioNTech) mRNA vaccine. METHODS: We sampled health-care workers enrolled in the PITCH study across four hospital sites in the UK (Oxford, Liverpool, Newcastle, and Sheffield). All health-care workers aged 18 years or older consenting to participate in this prospective cohort study were included, with no exclusion criteria applied. Blood samples were collected where possible before vaccination and 28 (±7) days following one or two doses (given 3-4 weeks apart) of the BNT162b2 vaccine. Previous infection was determined by a documented SARS-CoV-2-positive RT-PCR result or the presence of positive anti-SARS-CoV-2 nucleocapsid antibodies. We measured spike-specific IgG antibodies and quantified T-cell responses by interferon-γ enzyme-linked immunospot assay in all participants where samples were available at the time of analysis, comparing SARS-CoV-2-naive individuals to those with previous infection. FINDINGS: Between Dec 9, 2020, and Feb 9, 2021, 119 SARS-CoV-2-naive and 145 previously infected health-care workers received one dose, and 25 SARS-CoV-2-naive health-care workers received two doses, of the BNT162b2 vaccine. In previously infected health-care workers, the median time from previous infection to vaccination was 268 days (IQR 232-285). At 28 days (IQR 27-33) after a single dose, the spike-specific T-cell response measured in fresh peripheral blood mononuclear cells (PBMCs) was higher in previously infected (n=76) than in infection-naive (n=45) health-care workers (median 284 [IQR 150-461] vs 55 [IQR 24-132] spot-forming units [SFUs] per 106 PBMCs; p<0·0001). With cryopreserved PBMCs, the T-cell response in previously infected individuals (n=52) after one vaccine dose was equivalent to that of infection-naive individuals (n=19) after receiving two vaccine doses (median 152 [IQR 119-275] vs 162 [104-258] SFUs/106 PBMCs; p=1·00). Anti-spike IgG antibody responses following a single dose in 142 previously infected health-care workers (median 270 373 [IQR 203 461-535 188] antibody units [AU] per mL) were higher than in 111 infection-naive health-care workers following one dose (35 001 [17 099-55 341] AU/mL; p<0·0001) and higher than in 25 infection-naive individuals given two doses (180 904 [108 221-242 467] AU/mL; p<0·0001). INTERPRETATION: A single dose of the BNT162b2 vaccine is likely to provide greater protection against SARS-CoV-2 infection in individuals with previous SARS-CoV-2 infection, than in SARS-CoV-2-naive individuals, including against variants of concern. Future studies should determine the additional benefit of a second dose on the magnitude and durability of immune responses in individuals vaccinated following infection, alongside evaluation of the impact of extending the interval between vaccine doses. FUNDING: UK Department of Health and Social Care, and UK Coronavirus Immunology Consortium.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Leukocytes, Mononuclear , Prospective Studies , T-Lymphocytes , United Kingdom/epidemiology , Vaccines, Synthetic
14.
Cell ; 184(23): 5699-5714.e11, 2021 11 11.
Article in English | MEDLINE | ID: covidwho-1466093

ABSTRACT

Extension of the interval between vaccine doses for the BNT162b2 mRNA vaccine was introduced in the United Kingdom to accelerate population coverage with a single dose. At this time, trial data were lacking, and we addressed this in a study of United Kingdom healthcare workers. The first vaccine dose induced protection from infection from the circulating alpha (B.1.1.7) variant over several weeks. In a substudy of 589 individuals, we show that this single dose induces severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody (NAb) responses and a sustained B and T cell response to the spike protein. NAb levels were higher after the extended dosing interval (6-14 weeks) compared with the conventional 3- to 4-week regimen, accompanied by enrichment of CD4+ T cells expressing interleukin-2 (IL-2). Prior SARS-CoV-2 infection amplified and accelerated the response. These data on dynamic cellular and humoral responses indicate that extension of the dosing interval is an effective immunogenic protocol.


Subject(s)
COVID-19 Vaccines/immunology , Vaccines, Synthetic/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Cross-Priming/immunology , Dose-Response Relationship, Immunologic , Female , Humans , Immunity , Immunoglobulin G/immunology , Linear Models , Male , Middle Aged , Reference Standards , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Treatment Outcome , Young Adult
15.
PLoS Med ; 18(10): e1003816, 2021 10.
Article in English | MEDLINE | ID: covidwho-1463303

ABSTRACT

BACKGROUND: Nosocomial spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been widely reported, but the transmission pathways among patients and healthcare workers (HCWs) are unclear. Identifying the risk factors and drivers for these nosocomial transmissions is critical for infection prevention and control interventions. The main aim of our study was to quantify the relative importance of different transmission pathways of SARS-CoV-2 in the hospital setting. METHODS AND FINDINGS: This is an observational cohort study using data from 4 teaching hospitals in Oxfordshire, United Kingdom, from January to October 2020. Associations between infectious SARS-CoV-2 individuals and infection risk were quantified using logistic, generalised additive and linear mixed models. Cases were classified as community- or hospital-acquired using likely incubation periods of 3 to 7 days. Of 66,184 patients who were hospitalised during the study period, 920 had a positive SARS-CoV-2 PCR test within the same period (1.4%). The mean age was 67.9 (±20.7) years, 49.2% were females, and 68.5% were from the white ethnic group. Out of these, 571 patients had their first positive PCR tests while hospitalised (62.1%), and 97 of these occurred at least 7 days after admission (10.5%). Among the 5,596 HCWs, 615 (11.0%) tested positive during the study period using PCR or serological tests. The mean age was 39.5 (±11.1) years, 78.9% were females, and 49.8% were nurses. For susceptible patients, 1 day in the same ward with another patient with hospital-acquired SARS-CoV-2 was associated with an additional 7.5 infections per 1,000 susceptible patients (95% credible interval (CrI) 5.5 to 9.5/1,000 susceptible patients/day) per day. Exposure to an infectious patient with community-acquired Coronavirus Disease 2019 (COVID-19) or to an infectious HCW was associated with substantially lower infection risks (2.0/1,000 susceptible patients/day, 95% CrI 1.6 to 2.2). As for HCW infections, exposure to an infectious patient with hospital-acquired SARS-CoV-2 or to an infectious HCW were both associated with an additional 0.8 infection per 1,000 susceptible HCWs per day (95% CrI 0.3 to 1.6 and 0.6 to 1.0, respectively). Exposure to an infectious patient with community-acquired SARS-CoV-2 was associated with less than half this risk (0.2/1,000 susceptible HCWs/day, 95% CrI 0.2 to 0.2). These assumptions were tested in sensitivity analysis, which showed broadly similar results. The main limitations were that the symptom onset dates and HCW absence days were not available. CONCLUSIONS: In this study, we observed that exposure to patients with hospital-acquired SARS-CoV-2 is associated with a substantial infection risk to both HCWs and other hospitalised patients. Infection control measures to limit nosocomial transmission must be optimised to protect both staff and patients from SARS-CoV-2 infection.


Subject(s)
COVID-19 , Community-Acquired Infections , Cross Infection/epidemiology , Health Personnel , Hospitals , Infectious Disease Transmission, Patient-to-Professional , Infectious Disease Transmission, Professional-to-Patient , Adult , Aged , Aged, 80 and over , COVID-19/transmission , Cohort Studies , Female , Hospitalization , Hospitals/statistics & numerical data , Humans , Infection Control , Infectious Disease Transmission, Patient-to-Professional/statistics & numerical data , Infectious Disease Transmission, Professional-to-Patient/statistics & numerical data , Male , Middle Aged , Nurses , Risk Factors , SARS-CoV-2 , United Kingdom/epidemiology
16.
Clin Infect Dis ; 73(3): e699-e709, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1387800

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) antibody measurements can be used to estimate the proportion of a population exposed or infected and may be informative about the risk of future infection. Previous estimates of the duration of antibody responses vary. METHODS: We present 6 months of data from a longitudinal seroprevalence study of 3276 UK healthcare workers (HCWs). Serial measurements of SARS-CoV-2 anti-nucleocapsid and anti-spike IgG were obtained. Interval censored survival analysis was used to investigate the duration of detectable responses. Additionally, Bayesian mixed linear models were used to investigate anti-nucleocapsid waning. RESULTS: Anti-spike IgG levels remained stably detected after a positive result, for example, in 94% (95% credibility interval [CrI] 91-96%) of HCWs at 180 days. Anti-nucleocapsid IgG levels rose to a peak at 24 (95% CrI 19-31) days post first polymerase chain reaction (PCR)-positive test, before beginning to fall. Considering 452 anti-nucleocapsid seropositive HCWs over a median of 121 days from their maximum positive IgG titer, the mean estimated antibody half-life was 85 (95% CrI 81-90) days. Higher maximum observed anti-nucleocapsid titers were associated with longer estimated antibody half-lives. Increasing age, Asian ethnicity, and prior self-reported symptoms were independently associated with higher maximum anti-nucleocapsid levels and increasing age and a positive PCR test undertaken for symptoms with longer anti-nucleocapsid half-lives. CONCLUSIONS: SARS-CoV-2 anti-nucleocapsid antibodies wane within months and fall faster in younger adults and those without symptoms. However, anti-spike IgG remains stably detected. Ongoing longitudinal studies are required to track the long-term duration of antibody levels and their association with immunity to SARS-CoV-2 reinfection.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , Antibody Formation , Bayes Theorem , Health Personnel , Humans , Immunoglobulin G , Seroepidemiologic Studies
17.
Clinical Medicine ; 21:S40-S41, 2021.
Article in English | ProQuest Central | ID: covidwho-1380254

ABSTRACT

Introduction Patient-to-patient transmission has a well-recognised role in nosocomial COVID-19 infections,1 but identifying and isolating infectious individuals is challenging, due to limitations in the speed and accuracy of testing.2 To mediate this, many hospitals attempted to cohort patients based on suspicion of COVID-19 infection.3 We aimed to assess whether this strategy was successful at a district general hospital (DGH) in Oxfordshire. Patients are triaged at admission according to their likelihood of COVID-19 infection, with high/medium risk patients being admitted to EAU and low risk patients being admitted ward A. Patients requiring longer stays are then moved to ward B (high risk) or C (medium risk), depending on risk. By contrast, there were significant periods of exposure in EAU (Table 1), with over a quarter of the hours susceptible patients spent in six of the eight bays being exposed to at least one other infectious patient.

18.
Nat Commun ; 12(1): 5061, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1361634

ABSTRACT

The extent to which immune responses to natural infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and immunization with vaccines protect against variants of concern (VOC) is of increasing importance. Accordingly, here we analyse antibodies and T cells of a recently vaccinated, UK cohort, alongside those recovering from natural infection in early 2020. We show that neutralization of the VOC compared to a reference isolate of the original circulating lineage, B, is reduced: more profoundly against B.1.351 than for B.1.1.7, and in responses to infection or a single dose of vaccine than to a second dose of vaccine. Importantly, high magnitude T cell responses are generated after two vaccine doses, with the majority of the T cell response directed against epitopes that are conserved between the prototype isolate B and the VOC. Vaccination is required to generate high potency immune responses to protect against these and other emergent variants.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Monoclonal/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/metabolism , Antibodies, Viral/blood , Antibodies, Viral/immunology , Carrier Proteins , Epitopes , Humans , Immunity , SARS-CoV-2/drug effects , T-Lymphocytes/immunology
19.
J Infect ; 83(4): 473-482, 2021 10.
Article in English | MEDLINE | ID: covidwho-1330975

ABSTRACT

OBJECTIVES: Despite robust efforts, patients and staff acquire SARS-CoV-2 infection in hospitals. We investigated whether whole-genome sequencing enhanced the epidemiological investigation of healthcare-associated SARS-CoV-2 acquisition. METHODS: From 17-November-2020 to 5-January-2021, 803 inpatients and 329 staff were diagnosed with SARS-CoV-2 infection at four Oxfordshire hospitals. We classified cases using epidemiological definitions, looked for a potential source for each nosocomial infection, and evaluated genomic evidence supporting transmission. RESULTS: Using national epidemiological definitions, 109/803(14%) inpatient infections were classified as definite/probable nosocomial, 615(77%) as community-acquired and 79(10%) as indeterminate. There was strong epidemiological evidence to support definite/probable cases as nosocomial. Many indeterminate cases were likely infected in hospital: 53/79(67%) had a prior-negative PCR and 75(95%) contact with a potential source. 89/615(11% of all 803 patients) with apparent community-onset had a recent hospital exposure. Within 764 samples sequenced 607 genomic clusters were identified (>1 SNP distinct). Only 43/607(7%) clusters contained evidence of onward transmission (subsequent cases within ≤ 1 SNP). 20/21 epidemiologically-identified outbreaks contained multiple genomic introductions. Most (80%) nosocomial acquisition occurred in rapid super-spreading events in settings with a mix of COVID-19 and non-COVID-19 patients. CONCLUSIONS: Current surveillance definitions underestimate nosocomial acquisition. Most nosocomial transmission occurs from a relatively limited number of highly infectious individuals.


Subject(s)
COVID-19 , Cross Infection , Cross Infection/epidemiology , Disease Outbreaks , Hospitals , Humans , SARS-CoV-2
20.
Clin Infect Dis ; 74(7): 1208-1219, 2022 Apr 09.
Article in English | MEDLINE | ID: covidwho-1294706

ABSTRACT

BACKGROUND: Natural and vaccine-induced immunity will play a key role in controlling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. SARS-CoV-2 variants have the potential to evade natural and vaccine-induced immunity. METHODS: In a longitudinal cohort study of healthcare workers (HCWs) in Oxfordshire, United Kingdom, we investigated the protection from symptomatic and asymptomatic polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection conferred by vaccination (Pfizer-BioNTech BNT162b2, Oxford-AstraZeneca ChAdOx1 nCOV-19) and prior infection (determined using anti-spike antibody status), using Poisson regression adjusted for age, sex, temporal changes in incidence and role. We estimated protection conferred after 1 versus 2 vaccinations and from infections with the B.1.1.7 variant identified using whole genome sequencing. RESULTS: In total, 13 109 HCWs participated; 8285 received the Pfizer-BioNTech vaccine (1407 two doses), and 2738 the Oxford-AstraZeneca vaccine (49 two doses). Compared to unvaccinated seronegative HCWs, natural immunity and 2 vaccination doses provided similar protection against symptomatic infection: no HCW vaccinated twice had symptomatic infection, and incidence was 98% lower in seropositive HCWs (adjusted incidence rate ratio 0.02 [95% confidence interval {CI} < .01-.18]). Two vaccine doses or seropositivity reduced the incidence of any PCR-positive result with or without symptoms by 90% (0.10 [95% CI .02-.38]) and 85% (0.15 [95% CI .08-.26]), respectively. Single-dose vaccination reduced the incidence of symptomatic infection by 67% (0.33 [95% CI .21-.52]) and any PCR-positive result by 64% (0.36 [95% CI .26-.50]). There was no evidence of differences in immunity induced by natural infection and vaccination for infections with S-gene target failure and B.1.1.7. CONCLUSIONS: Natural infection resulting in detectable anti-spike antibodies and 2 vaccine doses both provide robust protection against SARS-CoV-2 infection, including against the B.1.1.7 variant.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Cohort Studies , Health Personnel , Humans , Immunoglobulins , Incidence , Longitudinal Studies , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL