Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cancer Epidemiol Biomarkers Prev ; 30(10): 1884-1894, 2021 10.
Article in English | MEDLINE | ID: covidwho-1450633

ABSTRACT

BACKGROUND: We described the demographics, cancer subtypes, comorbidities, and outcomes of patients with a history of cancer and coronavirus disease 2019 (COVID-19). Second, we compared patients hospitalized with COVID-19 to patients diagnosed with COVID-19 and patients hospitalized with influenza. METHODS: We conducted a cohort study using eight routinely collected health care databases from Spain and the United States, standardized to the Observational Medical Outcome Partnership common data model. Three cohorts of patients with a history of cancer were included: (i) diagnosed with COVID-19, (ii) hospitalized with COVID-19, and (iii) hospitalized with influenza in 2017 to 2018. Patients were followed from index date to 30 days or death. We reported demographics, cancer subtypes, comorbidities, and 30-day outcomes. RESULTS: We included 366,050 and 119,597 patients diagnosed and hospitalized with COVID-19, respectively. Prostate and breast cancers were the most frequent cancers (range: 5%-18% and 1%-14% in the diagnosed cohort, respectively). Hematologic malignancies were also frequent, with non-Hodgkin's lymphoma being among the five most common cancer subtypes in the diagnosed cohort. Overall, patients were aged above 65 years and had multiple comorbidities. Occurrence of death ranged from 2% to 14% and from 6% to 26% in the diagnosed and hospitalized COVID-19 cohorts, respectively. Patients hospitalized with influenza (n = 67,743) had a similar distribution of cancer subtypes, sex, age, and comorbidities but lower occurrence of adverse events. CONCLUSIONS: Patients with a history of cancer and COVID-19 had multiple comorbidities and a high occurrence of COVID-19-related events. Hematologic malignancies were frequent. IMPACT: This study provides epidemiologic characteristics that can inform clinical care and etiologic studies.


Subject(s)
COVID-19/mortality , Neoplasms/epidemiology , Outcome Assessment, Health Care/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Child , Cohort Studies , Comorbidity , Databases, Factual , Female , Hospitalization/statistics & numerical data , Humans , Influenza, Human/epidemiology , Male , Middle Aged , Pandemics , Prevalence , Risk Factors , SARS-CoV-2 , Spain/epidemiology , United States/epidemiology , Young Adult
2.
Cancer Epidemiol Biomarkers Prev ; 30(10): 1884-1894, 2021 10.
Article in English | MEDLINE | ID: covidwho-1317085

ABSTRACT

BACKGROUND: We described the demographics, cancer subtypes, comorbidities, and outcomes of patients with a history of cancer and coronavirus disease 2019 (COVID-19). Second, we compared patients hospitalized with COVID-19 to patients diagnosed with COVID-19 and patients hospitalized with influenza. METHODS: We conducted a cohort study using eight routinely collected health care databases from Spain and the United States, standardized to the Observational Medical Outcome Partnership common data model. Three cohorts of patients with a history of cancer were included: (i) diagnosed with COVID-19, (ii) hospitalized with COVID-19, and (iii) hospitalized with influenza in 2017 to 2018. Patients were followed from index date to 30 days or death. We reported demographics, cancer subtypes, comorbidities, and 30-day outcomes. RESULTS: We included 366,050 and 119,597 patients diagnosed and hospitalized with COVID-19, respectively. Prostate and breast cancers were the most frequent cancers (range: 5%-18% and 1%-14% in the diagnosed cohort, respectively). Hematologic malignancies were also frequent, with non-Hodgkin's lymphoma being among the five most common cancer subtypes in the diagnosed cohort. Overall, patients were aged above 65 years and had multiple comorbidities. Occurrence of death ranged from 2% to 14% and from 6% to 26% in the diagnosed and hospitalized COVID-19 cohorts, respectively. Patients hospitalized with influenza (n = 67,743) had a similar distribution of cancer subtypes, sex, age, and comorbidities but lower occurrence of adverse events. CONCLUSIONS: Patients with a history of cancer and COVID-19 had multiple comorbidities and a high occurrence of COVID-19-related events. Hematologic malignancies were frequent. IMPACT: This study provides epidemiologic characteristics that can inform clinical care and etiologic studies.


Subject(s)
COVID-19/mortality , Neoplasms/epidemiology , Outcome Assessment, Health Care/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Child , Cohort Studies , Comorbidity , Databases, Factual , Female , Hospitalization/statistics & numerical data , Humans , Influenza, Human/epidemiology , Male , Middle Aged , Pandemics , Prevalence , Risk Factors , SARS-CoV-2 , Spain/epidemiology , United States/epidemiology , Young Adult
3.
JMIR Med Inform ; 9(4): e25035, 2021 Apr 06.
Article in English | MEDLINE | ID: covidwho-1133823

ABSTRACT

BACKGROUND: Accurate and rapid clinical decisions based on real-world evidence are essential for patients with cancer. However, the complexity of chemotherapy regimens for cancer impedes retrospective research that uses observational health databases. OBJECTIVE: The aim of this study is to compare the anticancer treatment trajectories and patterns of clinical events according to regimen type using the chemotherapy episodes determined by an algorithm. METHODS: We developed an algorithm to extract the regimen-level abstracted chemotherapy episodes from medication records in a conventional Observational Medical Outcomes Partnership (OMOP) common data model (CDM) database. The algorithm was validated on the Ajou University School Of Medicine (AUSOM) database by manual review of clinical notes. Using the algorithm, we extracted episodes of chemotherapy from patients in the EHR database and the claims database. We also developed an application software for visualizing the chemotherapy treatment patterns based on the treatment episodes in the OMOP-CDM database. Using this software, we generated the trends in the types of regimen used in the institutions, the patterns of the iterative chemotherapy use, and the trajectories of cancer treatment in two EHR-based OMOP-CDM databases. As a pilot study, the time of onset of chemotherapy-induced neutropenia according to regimen was measured using the AUSOM database. The anticancer treatment trajectories for patients with COVID-19 were also visualized based on the nationwide claims database. RESULTS: We generated 178,360 treatment episodes for patients with colorectal, breast, and lung cancer for 85 different regimens. The algorithm precisely identified the type of chemotherapy regimen in 400 patients (average positive predictive value >98%). The trends in the use of routine clinical chemotherapy regimens from 2008-2018 were identified for 8236 patients. For a total of 12 regimens (those administered to the largest proportion of patients), the number of repeated treatments was concordant with the protocols for standard chemotherapy regimens for certain cases. In addition, the anticancer treatment trajectories for 8315 patients were shown, including 62 patients with COVID-19. A comparative analysis of neutropenia showed that its onset in colorectal cancer regimens tended to cluster between days 9-15, whereas it tended to cluster between days 2-8 for certain regimens for breast cancer or lung cancer. CONCLUSIONS: We propose a method for generating chemotherapy episodes for introduction into the oncology extension module of the OMOP-CDM databases. These proof-of-concept studies demonstrated the usability, scalability, and interoperability of the proposed framework through a distributed research network.

4.
Nat Commun ; 11(1): 5009, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-834880

ABSTRACT

Comorbid conditions appear to be common among individuals hospitalised with coronavirus disease 2019 (COVID-19) but estimates of prevalence vary and little is known about the prior medication use of patients. Here, we describe the characteristics of adults hospitalised with COVID-19 and compare them with influenza patients. We include 34,128 (US: 8362, South Korea: 7341, Spain: 18,425) COVID-19 patients, summarising between 4811 and 11,643 unique aggregate characteristics. COVID-19 patients have been majority male in the US and Spain, but predominantly female in South Korea. Age profiles vary across data sources. Compared to 84,585 individuals hospitalised with influenza in 2014-19, COVID-19 patients have more typically been male, younger, and with fewer comorbidities and lower medication use. While protecting groups vulnerable to influenza is likely a useful starting point in the response to COVID-19, strategies will likely need to be broadened to reflect the particular characteristics of individuals being hospitalised with COVID-19.


Subject(s)
Coronavirus Infections/epidemiology , Hospitalization , Influenza, Human/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19 , Cohort Studies , Comorbidity , Coronavirus Infections/drug therapy , Female , Humans , Influenza, Human/drug therapy , Male , Middle Aged , Pneumonia, Viral/drug therapy , Prevalence , Republic of Korea/epidemiology , Sex Factors , Spain/epidemiology , United States/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL