Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Blood Advances ; 2022.
Article in English | ScienceDirect | ID: covidwho-1799127

ABSTRACT

Pretransplant respiratory virus infections (RVIs) have been shown to negatively impact hematopoietic cell transplantation (HCT) outcomes. The impact of and need for delay of HCT for pretransplant infection with human rhinovirus (HRV) or endemic human coronavirus (HCoV) (229E, OC43, NL63, and HKU1) remains controversial. We analyzed the impact of symptomatic RVI within <90 days prior to HCT on overall mortality, posttransplant lower respiratory tract disease (LRD), and days alive and out of hospital (DAOH) by day 100 post HCT in multivariable models. Among 1,643 adult HCT recipients (58% allogeneic recipients), 704 (43%) were tested for RVI before HCT and 307 (44%) tested positive. HRV was most commonly detected (56%). Forty-five (15%) of 307 HCT recipients had LRD with the same virus early after HCT. Pretransplant upper respiratory infection (URI) with influenza, respiratory syncytial virus, adenovirus, human metapneumovirus, parainfluenza virus, HRV or endemic HCoV was not associated with increased overall mortality or fewer DAOH. However, in allogeneic recipients who received myeloablative conditioning, LRD due to any respiratory virus, including HRV alone, was associated with increased overall mortality (adjusted hazard ratio 10.8 [95% CI 3.29, 35.1] for HRV and 3.21 [95% CI 1.15, 9.01] for all other viruses). HRV LRD was also associated with fewer DAOH. Thus, the presence of LRD due to common respiratory viruses, including HRV, before myeloablative allogeneic HCT was associated with increased mortality and hospitalization. Pretransplant URI due to HRV and endemic HCoV was not associated with these outcomes. Improved management strategies for pretransplant LRD are warranted.

2.
Sci Rep ; 12(1): 5856, 2022 Apr 07.
Article in English | MEDLINE | ID: covidwho-1784021

ABSTRACT

Rapid dissemination of SARS-CoV-2 sequencing data to public repositories has enabled widespread study of viral genomes, but studies of longitudinal specimens from infected persons are relatively limited. Analysis of longitudinal specimens enables understanding of how host immune pressures drive viral evolution in vivo. Here we performed sequencing of 49 longitudinal SARS-CoV-2-positive samples from 20 patients in Washington State collected between March and September of 2020. Viral loads declined over time with an average increase in RT-QPCR cycle threshold of 0.87 per day. We found that there was negligible change in SARS-CoV-2 consensus sequences over time, but identified a number of nonsynonymous variants at low frequencies across the genome. We observed enrichment for a relatively small number of these variants, all of which are now seen in consensus genomes across the globe at low prevalence. In one patient, we saw rapid emergence of various low-level deletion variants at the N-terminal domain of the spike glycoprotein, some of which have previously been shown to be associated with reduced neutralization potency from sera. In a subset of samples that were sequenced using metagenomic methods, differential gene expression analysis showed a downregulation of cytoskeletal genes that was consistent with a loss of ciliated epithelium during infection and recovery. We also identified co-occurrence of bacterial species in samples from multiple hospitalized individuals. These results demonstrate that the intrahost genetic composition of SARS-CoV-2 is dynamic during the course of COVID-19, and highlight the need for continued surveillance and deep sequencing of minor variants.


Subject(s)
COVID-19 , COVID-19/genetics , Genome, Viral , Humans , Metagenome , Metagenomics , SARS-CoV-2/genetics
3.
J Infect Dis ; 2022 Feb 12.
Article in English | MEDLINE | ID: covidwho-1774394

ABSTRACT

While detection of SARS-CoV-2 by diagnostic RT-PCR is highly sensitive for viral RNA, the nucleic acid amplification of subgenomic RNAs (sgRNA) that are the product of viral replication may more accurately identify replication. We characterized the diagnostic RT-PCR and sgRNA detection from nasal swabs collected daily by participants in post exposure prophylaxis or treatment studies for SARS-CoV-2. Among 1932 RT-PCR-positive swabs with sgRNA tests, 40% (767) had detectable sgRNA. Above a diagnostic PCR viral load threshold of 5.1 log10 copies/mL, 96% of samples had detectable sgRNA with viral loads that followed a linear trend. The trajectories of diagnostic and sgRNA viral loads differed, with 80% peaking on the same day but duration of sgRNA detection being shorter (8 versus 14 days). With a large sample of daily swabs we provide comparative sgRNA kinetics and a diagnostic PCR threshold that correlates with replicating virus independent of symptoms or duration of illness.

5.
Clin Infect Dis ; 74(6): 1089-1092, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1703666

ABSTRACT

Across 20 vaccine breakthrough cases detected at our institution, all 20 (100%) infections were due to variants of concern (VOCs) and had a median Ct of 20.2 (IQR, 17.1-23.3). When compared with 5174 contemporaneous samples sequenced in our laboratory, VOCs were significantly enriched among breakthrough infections (P < .05).


Subject(s)
COVID-19 , SARS-CoV-2 , Base Sequence , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Washington/epidemiology
6.
Emerg Infect Dis ; 28(3): 672-683, 2022 03.
Article in English | MEDLINE | ID: covidwho-1700734

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serosurveys can estimate cumulative incidence for monitoring epidemics, requiring assessment of serologic assays to inform testing algorithm development and interpretation of results. We conducted a multilaboratory evaluation of 21 commercial high-throughput SARS-CoV-2 serologic assays using blinded panels of 1,000 highly characterized specimens. Assays demonstrated a range of sensitivities (96%-63%), specificities (99%-96%), and precision (intraclass correlation coefficient 0.55-0.99). Durability of antibody detection was dependent on antigen and immunoglobulin targets; antispike and total Ig assays demonstrated more stable longitudinal reactivity than antinucleocapsid and IgG assays. Assays with high sensitivity, specificity, and durable antibody detection are ideal for serosurveillance, but assays demonstrating waning reactivity are appropriate for other applications, including correlation with neutralizing activity and detection of anamnestic boosting by reinfections. Assay performance must be evaluated in context of intended use, particularly in the context of widespread vaccination and circulation of SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Sensitivity and Specificity , Serologic Tests/methods
7.
Clin Infect Dis ; 2022 Feb 13.
Article in English | MEDLINE | ID: covidwho-1684566

ABSTRACT

COVID-19 symptom definitions rarely include symptom severity. We collected daily nasal swabs and symptom diaries from contacts of SARS-CoV-2 cases. Requiring ≥1 moderate or severe symptom reduced sensitivity to predict SARS-CoV-2 shedding from 60.0% (CI: 52.9-66.7%) to 31.5% (CI: 25.7-38.0%), but increased specificity from 77.5% (CI:75.3-79.5%) to 93.8% (CI: 92.7-94.8%).

8.
Scientific reports ; 12(1), 2022.
Article in English | EuropePMC | ID: covidwho-1652406

ABSTRACT

SARS-CoV-2 is spreading worldwide with continuously evolving variants, some of which occur in the Spike protein and appear to increase viral transmissibility. However, variants that cause severe COVID-19 or lead to other breakthroughs have not been well characterized. To discover such viral variants, we assembled a cohort of 683 COVID-19 patients;388 inpatients (“cases”) and 295 outpatients (“controls”) from April to August 2020 using electronically captured COVID test request forms and sequenced their viral genomes. To improve the analytical power, we accessed 7137 viral sequences in Washington State to filter out viral single nucleotide variants (SNVs) that did not have significant expansions over the collection period. Applying this filter led to the identification of 53 SNVs that were statistically significant, of which 13 SNVs each had 3 or more variant copies in the discovery cohort. Correlating these selected SNVs with case/control status, eight SNVs were found to significantly associate with inpatient status (q-values < 0.01). Using temporal synchrony, we identified a four SNV-haplotype (t19839-g28881-g28882-g28883) that was significantly associated with case/control status (Fisher’s exact p = 2.84 × 10–11). This haplotype appeared in April 2020, peaked in June, and persisted into January 2021. The association was replicated (OR = 5.46, p-value = 4.71 × 10−12) in an independent cohort of 964 COVID-19 patients (June 1, 2020 to March 31, 2021). The haplotype included a synonymous change N73N in endoRNase, and three non-synonymous changes coding residues R203K, R203S and G204R in the nucleocapsid protein. This discovery points to the potential functional role of the nucleocapsid protein in triggering “cytokine storms” and severe COVID-19 that led to hospitalization. The study further emphasizes a need for tracking and analyzing viral sequences in correlations with clinical status.

9.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Article in English | MEDLINE | ID: covidwho-1642084

ABSTRACT

Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants pose a challenge to controlling the COVID-19 pandemic. Previous studies indicate that clinical samples collected from individuals infected with the Delta variant may contain higher levels of RNA than previous variants, but the relationship between levels of viral RNA and infectious virus for individual variants is unknown. We measured infectious viral titer (using a microfocus-forming assay) and total and subgenomic viral RNA levels (using RT-PCR) in a set of 162 clinical samples containing SARS-CoV-2 Alpha, Delta, and Epsilon variants that were collected in identical swab kits from outpatient test sites and processed soon after collection. We observed a high degree of variation in the relationship between viral titers and RNA levels. Despite this, the overall infectivity differed among the three variants. Both Delta and Epsilon had significantly higher infectivity than Alpha, as measured by the number of infectious units per quantity of viral E gene RNA (5.9- and 3.0-fold increase; P < 0.0001, P = 0.014, respectively) or subgenomic E RNA (14.3- and 6.9-fold increase; P < 0.0001, P = 0.004, respectively). In addition to higher viral RNA levels reported for the Delta variant, the infectivity (amount of replication competent virus per viral genome copy) may be increased compared to Alpha. Measuring the relationship between live virus and viral RNA is an important step in assessing the infectivity of novel SARS-CoV-2 variants. An increase in the infectivity for Delta may further explain increased spread, suggesting a need for increased measures to prevent viral transmission.


Subject(s)
COVID-19/epidemiology , Gene Expression Regulation, Viral , Genome, Viral , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Animals , COVID-19/pathology , COVID-19/transmission , COVID-19/virology , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus Envelope Proteins/genetics , Coronavirus Envelope Proteins/metabolism , Hepatocytes/metabolism , Hepatocytes/virology , Humans , RNA, Viral/metabolism , SARS-CoV-2/classification , SARS-CoV-2/metabolism , Vero Cells , Viral Load , Virulence
10.
PLoS One ; 17(1): e0261853, 2022.
Article in English | MEDLINE | ID: covidwho-1622346

ABSTRACT

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is used worldwide to test and trace the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). "Extraction-less" or "direct" real time-reverse transcription polymerase chain reaction (RT-PCR) is a transparent and accessible qualitative method for SARS-CoV-2 detection from nasopharyngeal or oral pharyngeal samples with the potential to generate actionable data more quickly, at a lower cost, and with fewer experimental resources than full RT-qPCR. This study engaged 10 global testing sites, including laboratories currently experiencing testing limitations due to reagent or equipment shortages, in an international interlaboratory ring trial. Participating laboratories were provided a common protocol, common reagents, aliquots of identical pooled clinical samples, and purified nucleic acids and used their existing in-house equipment. We observed 100% concordance across laboratories in the correct identification of all positive and negative samples, with highly similar cycle threshold values. The test also performed well when applied to locally collected patient nasopharyngeal samples, provided the viral transport media did not contain charcoal or guanidine, both of which appeared to potently inhibit the RT-PCR reaction. Our results suggest that direct RT-PCR assay methods can be clearly translated across sites utilizing readily available equipment and expertise and are thus a feasible option for more efficient COVID-19 coronavirus disease testing as demanded by the continuing pandemic.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Reverse Transcription/genetics , SARS-CoV-2/genetics , COVID-19/virology , Feasibility Studies , Humans , Nasopharynx/virology , Pandemics/prevention & control , Sensitivity and Specificity , Serologic Tests/methods , Specimen Handling/methods
11.
JAMA Netw Open ; 5(1): e2142796, 2022 01 04.
Article in English | MEDLINE | ID: covidwho-1615909

ABSTRACT

Importance: The SARS-CoV-2 viral trajectory has not been well characterized in incident infections. These data are needed to inform natural history, prevention practices, and therapeutic development. Objective: To characterize early SARS-CoV-2 viral RNA load (hereafter referred to as viral load) in individuals with incident infections in association with COVID-19 symptom onset and severity. Design, Setting, and Participants: This prospective cohort study was a secondary data analysis of a remotely conducted study that enrolled 829 asymptomatic community-based participants recently exposed (<96 hours) to persons with SARS-CoV-2 from 41 US states from March 31 to August 21, 2020. Two cohorts were studied: (1) participants who were SARS-CoV-2 negative at baseline and tested positive during study follow-up, and (2) participants who had 2 or more positive swabs during follow-up, regardless of the initial (baseline) swab result. Participants collected daily midturbinate swab samples for SARS-CoV-2 RNA detection and maintained symptom diaries for 14 days. Exposure: Laboratory-confirmed SARS-CoV-2 infection. Main Outcomes and Measures: The observed SARS-CoV-2 viral load among incident infections was summarized, and piecewise linear mixed-effects models were used to estimate the characteristics of viral trajectories in association with COVID-19 symptom onset and severity. Results: A total of 97 participants (55 women [57%]; median age, 37 years [IQR, 27-52 years]) developed incident infections during follow-up. Forty-two participants (43%) had viral shedding for 1 day (median peak viral load cycle threshold [Ct] value, 38.5 [95% CI, 38.3-39.0]), 18 (19%) for 2 to 6 days (median Ct value, 36.7 [95% CI, 30.2-38.1]), and 31 (32%) for 7 days or more (median Ct value, 18.3 [95% CI, 17.4-22.0]). The cycle threshold value has an inverse association with viral load. Six participants (6%) had 1 to 6 days of viral shedding with censored duration. The peak mean (SD) viral load was observed on day 3 of shedding (Ct value, 33.8 [95% CI, 31.9-35.6]). Based on the statistical models fitted to 129 participants (60 men [47%]; median age, 38 years [IQR, 25-54 years]) with 2 or more SARS-CoV-2-positive swab samples, persons reporting moderate or severe symptoms tended to have a higher peak mean viral load than those who were asymptomatic (Ct value, 23.3 [95% CI, 22.6-24.0] vs 30.7 [95% CI, 29.8-31.4]). Mild symptoms generally started within 1 day of peak viral load, and moderate or severe symptoms 2 days after peak viral load. All 535 sequenced samples detected the G614 variant (Wuhan strain). Conclusions and Relevance: This cohort study suggests that having incident SARS-CoV-2 G614 infection was associated with a rapid viral load peak followed by slower decay. COVID-19 symptom onset generally coincided with peak viral load, which correlated positively with symptom severity. This longitudinal evaluation of the SARS-CoV-2 G614 with frequent molecular testing serves as a reference for comparing emergent viral lineages to inform clinical trial designs and public health strategies to contain the spread of the virus.


Subject(s)
COVID-19/virology , RNA, Viral , SARS-CoV-2 , Severity of Illness Index , Viral Load , Virus Shedding , Adult , COVID-19/complications , Female , Humans , Incidence , Longitudinal Studies , Male , Middle Aged , Molecular Diagnostic Techniques/methods , Polymerase Chain Reaction/methods , Prospective Studies , Serologic Tests
12.
Viruses ; 14(1)2021 12 21.
Article in English | MEDLINE | ID: covidwho-1580415

ABSTRACT

The emergence and establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of interest (VOIs) and variants of concern (VOCs) highlight the importance of genomic surveillance. We propose a statistical learning strategy (SLS) for identifying and spatiotemporally tracking potentially relevant Spike protein mutations. We analyzed 167,893 Spike protein sequences from coronavirus disease 2019 (COVID-19) cases in the United States (excluding 21,391 sequences from VOI/VOC strains) deposited at GISAID from 19 January 2020 to 15 March 2021. Alignment against the reference Spike protein sequence led to the identification of viral residue variants (VRVs), i.e., residues harboring a substitution compared to the reference strain. Next, generalized additive models were applied to model VRV temporal dynamics and to identify VRVs with significant and substantial dynamics (false discovery rate q-value < 0.01; maximum VRV proportion >10% on at least one day). Unsupervised learning was then applied to hierarchically organize VRVs by spatiotemporal patterns and identify VRV-haplotypes. Finally, homology modeling was performed to gain insight into the potential impact of VRVs on Spike protein structure. We identified 90 VRVs, 71 of which had not previously been observed in a VOI/VOC, and 35 of which have emerged recently and are durably present. Our analysis identified 17 VRVs ~91 days earlier than their first corresponding VOI/VOC publication. Unsupervised learning revealed eight VRV-haplotypes of four VRVs or more, suggesting two emerging strains (B1.1.222 and B.1.234). Structural modeling supported a potential functional impact of the D1118H and L452R mutations. The SLS approach equally monitors all Spike residues over time, independently of existing phylogenic classifications, and is complementary to existing genomic surveillance methods.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , COVID-19/epidemiology , Haplotypes , Humans , Models, Molecular , Models, Statistical , Mutation , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Spatio-Temporal Analysis , Spike Glycoprotein, Coronavirus/chemistry , United States/epidemiology , Unsupervised Machine Learning
13.
EMBO Mol Med ; 14(2): e15290, 2022 02 07.
Article in English | MEDLINE | ID: covidwho-1551925

ABSTRACT

With the COVID-19 pandemic caused by SARS-CoV-2 now in its second year, there remains an urgent need for diagnostic testing that can identify infected individuals, particularly those who harbor infectious virus. Various RT-PCR strategies have been proposed to identify specific viral RNA species that may predict the presence of infectious virus, including detection of transcriptional intermediates (e.g., subgenomic RNA [sgRNA]) and replicative intermediates (e.g., negative-strand RNA species). Using a novel primer/probe set for detection of subgenomic (sg)E transcripts, we successfully identified 100% of specimens containing culturable SARS-CoV-2 from a set of 126 clinical samples (total sgE CT values ranging from 12.3 to 37.5). This assay showed superior performance compared to a previously published sgRNA assay and to a negative-strand RNA assay, both of which failed to detect target RNA in a subset of samples from which we isolated live virus. In addition, total levels of viral RNA (genome, negative-strand, and sgE) detected with the WHO/Charité primer-probe set correlated closely with levels of infectious virus. Specifically, infectious virus was not detected in samples with a CT above 31.0. Clinical samples with higher levels of viral RNA also displayed cytopathic effect (CPE) more quickly than those with lower levels of viral RNA. Finally, we found that the infectivity of SARS-CoV-2 samples is significantly dependent on the cell type used for viral isolation, as Vero E6 cells expressing TMRPSS2 extended the analytical sensitivity of isolation by more than 3 CT compared to parental Vero E6 cells and resulted in faster isolation. Our work shows that using a total viral RNA Ct cutoff of > 31 or specifically testing for sgRNA can serve as an effective rule-out test for the presence of culturable virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Polymerase Chain Reaction , RNA, Viral/genetics
14.
J Clin Microbiol ; 59(9): e0098921, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1501532

ABSTRACT

With the availability of widespread SARS-CoV-2 vaccination, high-throughput quantitative anti-spike protein serological testing will likely become increasingly important. Here, we investigated the performance characteristics of the recently FDA-authorized semiquantitative anti-spike protein AdviseDx SARS-CoV-2 IgG II assay compared to the FDA-authorized anti-nucleocapsid protein Abbott Architect SARS-CoV-2 IgG, Roche Elecsys anti-SARS-CoV-2-S, EuroImmun anti-SARS-CoV-2 enzyme-linked immunosorbent assay (ELISA), and GenScript surrogate virus neutralization assays and examined the humoral response associated with vaccination, natural protection, and vaccine breakthrough infection. The AdviseDx assay had a clinical sensitivity at 14 days after symptom onset or 10 days after PCR detection of 95.6% (65/68; 95% confidence interval [CI], 87.8 to 98.8%), with two discrepant individuals seroconverting shortly thereafter. The AdviseDx assay demonstrated 100% positive percent agreement with the four other assays examined using the same symptom onset or PCR detection cutoffs. Using a recently available WHO international standard for anti-SARS-CoV-2 antibody, we provide assay unit conversion factors to international units for each of the assays examined. We performed a longitudinal survey of healthy vaccinated individuals, finding that median AdviseDx immunoglobulin levels peaked 7 weeks after first vaccine dose at approximately 4,000 IU/ml. Intriguingly, among the five assays examined, there was no significant difference in antigen binding level or neutralizing activity between two seropositive patients protected against SARS-CoV-2 infection in a previously described fishing vessel outbreak and five health care workers who experienced vaccine breakthrough of SARS-CoV-2 infection, all with variants of concern. These findings suggest that protection against SARS-CoV-2 infection cannot currently be predicted exclusively using in vitro antibody assays against wild-type SARS-CoV-2 spike. Further work is required to establish protective correlates for SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19 Vaccines , Humans , Sensitivity and Specificity
15.
J Med Virol ; 93(10): 5931-5941, 2021 10.
Article in English | MEDLINE | ID: covidwho-1432428

ABSTRACT

Real-time epidemiological tracking of variants of concern (VOCs) can help limit the spread of more contagious forms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), such as those containing the N501Y mutation. Typically, genetic sequencing is required to be able to track VOCs in real-time. However, sequencing can take time and may not be accessible in all laboratories. Genotyping by RT-ddPCR offers an alternative to rapidly detect VOCs through discrimination of specific alleles such as N501Y, which is associated with increased transmissibility and virulence. Here we describe the first cases of the B.1.1.7 lineage of SARS-CoV-2 detected in Washington State by using a combination of reverse-transcription polymerase chain reaction (RT-PCR), RT-ddPCR, and next-generation sequencing. We initially screened 1035 samples positive for SARS-CoV-2 by our CDC-based laboratory-developed assay using ThermoFisher's multiplex RT-PCR COVID-19 assay over four weeks from late December 2020 to early January 2021. S gene target failures (SGTF) were subsequently assayed by RT-ddPCR to confirm four mutations within the S gene associated with the B.1.1.7 lineage: a deletion at amino acid (AA) 69-70 (ACATGT), deletion at AA 145, (TTA), N501Y mutation (TAT), and S982A mutation (GCA). All four targets were detected in two specimens; follow-up sequencing revealed a total of 9 mutations in the S gene and phylogenetic clustering within the B.1.1.7 lineage. Next, we continued screening samples for SGTF detecting 23 additional B.1.1.7 variants by RT-ddPCR and confirmed by sequencing. As VOCs become increasingly prevalent, molecular diagnostic tools like RT-ddPCR can be utilized to quickly, accurately, and sensitively distinguish more contagious lineages of SARS-CoV-2.


Subject(s)
COVID-19 Nucleic Acid Testing , Real-Time Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Alleles , COVID-19/diagnosis , COVID-19/epidemiology , Genotype , High-Throughput Nucleotide Sequencing , Humans , Mutation , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Time Factors , Washington/epidemiology
16.
J Clin Microbiol ; 59(10): e0052721, 2021 09 20.
Article in English | MEDLINE | ID: covidwho-1430152

ABSTRACT

Determinants of protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection require the development of well-standardized, reproducible antibody assays. This need has led to the emergence of a variety of neutralization assays. Head-to-head evaluation of different SARS-CoV-2 neutralization platforms could facilitate comparisons across studies and laboratories. Five neutralization assays were compared using 40 plasma samples from convalescent individuals with mild to moderate coronavirus disease 2019 (COVID-19): four cell-based systems using either live recombinant SARS-CoV-2 or pseudotyped viral particles created with lentivirus (LV) or vesicular stomatitis virus (VSV) packaging and one surrogate enzyme-linked immunosorbent assay (ELISA)-based test that measures inhibition of the spike protein receptor binding domain (RBD) binding its receptor human angiotensin converting enzyme 2 (hACE2). Vero cells, Vero E6 cells, HEK293T cells expressing hACE2, and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 were tested. All cell-based assays showed 50% neutralizing dilution (ND50) geometric mean titers (GMTs) that were highly correlated (Pearson r = 0.81 to 0.89) and ranged within 3.4-fold. The live virus assay and LV pseudovirus assays with HEK293T/hACE2 cells showed very similar mean titers, 141 and 178, respectively. ND50 titers positively correlated with plasma IgG targeting SARS-CoV-2 spike protein and RBD (r = 0.63 to 0.89), but moderately correlated with nucleoprotein IgG (r = 0.46 to 0.73). ND80 GMTs mirrored ND50 data and showed similar correlation between assays and with IgG concentrations. The VSV pseudovirus assay and LV pseudovirus assay with HEK293T/hACE2 cells in low- and high-throughput versions were calibrated against the WHO SARS-CoV-2 IgG standard. High concordance between the outcomes of cell-based assays with live and pseudotyped virions enables valid cross-study comparison using these platforms.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Chlorocebus aethiops , HEK293 Cells , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus/genetics , Vero Cells
17.
J Clin Virol ; 140: 104869, 2021 07.
Article in English | MEDLINE | ID: covidwho-1385865

ABSTRACT

Mass molecular diagnostic testing for the SARS-CoV-2 pandemic has drawn on laboratory developed tests, commercial assays, and fully-automated platforms to accommodate widespread demand. The Alinity m instrument by Abbott is capable of detecting several clinically relevant pathogens and has recently received FDA emergency use authorization for SARS-CoV-2 molecular testing. The Alinity m performs automatic sample preparation, RT-PCR assembly, amplification, detection, and result calculation in under two hours. Here, we validate the performance characteristics of the Alinity m SARS-CoV-2 assay in comparison with the Roche cobas 6800 and Hologic Panther Fusion platforms. Across 178 positive and 195 negative nasopharyngeal swab specimens (CT range 14.30-38.84), the Alinity m detected one additional positive specimen that was found to be negative on the Roche cobas 6800 (PPA 100%, NPA 99.5%). Across a separate set of 30 positive and 174 negative nasopharyngeal swab specimens (CT range 14.1-38.5), the Alinity m had 100% positive and negative agreement with the Hologic Panther Fusion. Using SeraCare SARS-CoV-2 RNA standards, the assay limit of detection was verified to be two-fold more sensitive than the parameters stated by the SARS-CoV-2 AMP kit package insert, at 50 virus copies/mL. Assay specificity was 100% over 20 specimens positive for other respiratory viruses and intraday precision was 100% concordant with <2% CV. These data illst u illustrate the Abbott Alinity m system's high concordance with reference assays and analyti high analytical for SARS-CoV-2 molecular detection.


Subject(s)
COVID-19 Testing/standards , COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Clinical Laboratory Techniques , Humans , Limit of Detection , Pandemics , RNA, Viral , Sensitivity and Specificity
18.
J Infect Dis ; 2020 Jul 25.
Article in English | MEDLINE | ID: covidwho-1387897

ABSTRACT

The SARS-CoV-2 pandemic demonstrates the need for accurate and convenient approaches to diagnose and therapeutically monitor respiratory viral infections. We demonstrated that self-sampling with foam swabs is well-tolerated and provides quantitative viral output concordant with flocked swabs. Using longitudinal home-based self-sampling, we demonstrate nasal cytokine levels correlate and cluster according to immune cell of origin. Periods of stable viral loads are followed by rapid elimination, which could be coupled with cytokine expansion and contraction. Nasal foam swab self-sampling at home provides a precise, mechanistic readout of respiratory virus shedding and local immune responses.

20.
J Clin Microbiol ; 59(9): e0098921, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1365134

ABSTRACT

With the availability of widespread SARS-CoV-2 vaccination, high-throughput quantitative anti-spike protein serological testing will likely become increasingly important. Here, we investigated the performance characteristics of the recently FDA-authorized semiquantitative anti-spike protein AdviseDx SARS-CoV-2 IgG II assay compared to the FDA-authorized anti-nucleocapsid protein Abbott Architect SARS-CoV-2 IgG, Roche Elecsys anti-SARS-CoV-2-S, EuroImmun anti-SARS-CoV-2 enzyme-linked immunosorbent assay (ELISA), and GenScript surrogate virus neutralization assays and examined the humoral response associated with vaccination, natural protection, and vaccine breakthrough infection. The AdviseDx assay had a clinical sensitivity at 14 days after symptom onset or 10 days after PCR detection of 95.6% (65/68; 95% confidence interval [CI], 87.8 to 98.8%), with two discrepant individuals seroconverting shortly thereafter. The AdviseDx assay demonstrated 100% positive percent agreement with the four other assays examined using the same symptom onset or PCR detection cutoffs. Using a recently available WHO international standard for anti-SARS-CoV-2 antibody, we provide assay unit conversion factors to international units for each of the assays examined. We performed a longitudinal survey of healthy vaccinated individuals, finding that median AdviseDx immunoglobulin levels peaked 7 weeks after first vaccine dose at approximately 4,000 IU/ml. Intriguingly, among the five assays examined, there was no significant difference in antigen binding level or neutralizing activity between two seropositive patients protected against SARS-CoV-2 infection in a previously described fishing vessel outbreak and five health care workers who experienced vaccine breakthrough of SARS-CoV-2 infection, all with variants of concern. These findings suggest that protection against SARS-CoV-2 infection cannot currently be predicted exclusively using in vitro antibody assays against wild-type SARS-CoV-2 spike. Further work is required to establish protective correlates for SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19 Vaccines , Humans , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL