Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Journal of family medicine and primary care ; 11(6):2816-2823, 2022.
Article in English | EuropePMC | ID: covidwho-2034197


Background: Estimating seroepidemiolgical prevalence of SARS-CoV-2 antibody is an essential public health strategy. There is insufficient evidence of prevalence among those belonging to young age population in India. Objective: To compare the SARS-CoV-2 seropositivity rate between children and adults in selected sites from India. Materials and Methods: This was a multicentric population-based seroepidemiological study conducted in selected urban and rural areas of five sites selected from four states (Delhi, Odisha, Uttar Pradesh, Tripura) of India. Participants aged ≥1 year were included from different clusters of each area. Total serum antibody against SARS-CoV-2 virus was assessed qualitatively by using a standard enzyme-linked immunosorbent assay (ELISA) kit. Results: Data collection period was from 15 March 2021 to 10 June 2021. Total available data was of 4509 participants, of whom 700 were <18 years of age and 3809 were ≥18 years of age. The site-wise number of available data among those aged 2–17 years was 92, 189, 165, 146 and 108 for the sites of Delhi urban, Delhi rural, Bhubaneswar rural, Gorakhpur rural and Agartala rural area, respectively. The seroprevalence was 55.7% in the <18 years age group and 63.5% in the ≥18 years age group. The prevalence among female children was 58% and among male children was 53%. Conclusion: SARS-CoV-2 seropositivity rate among children was high and comparable to that of the adult population. Hence, it is unlikely that any future third wave by prevailing SARS-CoV-2 variant would disproportionately infect children 2 years or older.

JAMA Netw Open ; 5(2): e2146798, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1694847


Importance: The incidence of infection during SARS-CoV-2 viral waves, the factors associated with infection, and the durability of antibody responses to infection among Canadian adults remain undocumented. Objective: To assess the cumulative incidence of SARS-CoV-2 infection during the first 2 viral waves in Canada by measuring seropositivity among adults. Design, Setting, and Participants: The Action to Beat Coronavirus study conducted 2 rounds of an online survey about COVID-19 experience and analyzed immunoglobulin G levels based on participant-collected dried blood spots (DBS) to assess the cumulative incidence of SARS-CoV-2 infection during the first and second viral waves in Canada. A sample of 19 994 Canadian adults (aged ≥18 years) was recruited from established members of the Angus Reid Forum, a public polling organization. The study comprised 2 phases (phase 1 from May 1 to September 30, 2020, and phase 2 from December 1, 2020, to March 31, 2021) that generally corresponded to the first (April 1 to July 31, 2020) and second (October 1, 2020, to March 1, 2021) viral waves. Main Outcomes and Measures: SARS-CoV-2 immunoglobulin G seropositivity (using a chemiluminescence assay) by major geographic and demographic variables and correlation with COVID-19 symptom reporting. Results: Among 19 994 adults who completed the online questionnaire in phase 1, the mean (SD) age was 50.9 (15.4) years, and 10 522 participants (51.9%) were female; 2948 participants (14.5%) had self-identified racial and ethnic minority group status, and 1578 participants (8.2%) were self-identified Indigenous Canadians. Among participants in phase 1, 8967 had DBS testing. In phase 2, 14 621 adults completed online questionnaires, and 7102 of those had DBS testing. Of 19 994 adults who completed the online survey in phase 1, fewer had an educational level of some college or less (4747 individuals [33.1%]) compared with the general population in Canada (45.0%). Survey respondents were otherwise representative of the general population, including in prevalence of known risk factors associated with SARS-CoV-2 infection. The cumulative incidence of SARS-CoV-2 infection among unvaccinated adults increased from 1.9% in phase 1 to 6.5% in phase 2. The seropositivity pattern was demographically and geographically heterogeneous during phase 1 but more homogeneous by phase 2 (with a cumulative incidence ranging from 6.4% to 7.0% in most regions). The exception was the Atlantic region, in which cumulative incidence reached only 3.3% (odds ratio [OR] vs Ontario, 0.46; 95% CI, 0.21-1.02). A total of 47 of 188 adults (25.3%) reporting COVID-19 symptoms during phase 2 were seropositive, and the OR of seropositivity for COVID-19 symptoms was 6.15 (95% CI, 2.02-18.69). In phase 2, 94 of 444 seropositive adults (22.2%) reported having no symptoms. Of 134 seropositive adults in phase 1 who were retested in phase 2, 111 individuals (81.8%) remained seropositive. Participants who had a history of diabetes (OR, 0.58; 95% CI, 0.38-0.90) had lower odds of having detectable antibodies in phase 2. Conclusions and Relevance: The Action to Beat Coronavirus study found that the incidence of SARS-CoV-2 infection in Canada was modest until March 2021, and this incidence was lower than the levels of population immunity required to substantially reduce transmission of the virus. Ongoing vaccination efforts remain central to reducing viral transmission and mortality. Assessment of future infection-induced and vaccine-induced immunity is practicable through the use of serial online surveys and participant-collected DBS.

COVID-19 Serological Testing/statistics & numerical data , COVID-19/epidemiology , Immunoglobulin G/blood , Adolescent , Adult , Aged , COVID-19/immunology , Canada/epidemiology , Female , Humans , Incidence , Male , Middle Aged , Pandemics , SARS-CoV-2 , Surveys and Questionnaires
Indian J Public Health ; 64(Supplement): S139-S141, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-560568


The number of secondary cases from each primary case determines how fast an epidemic grows. It is known that all cases do not spread the infection equally; super spreaders play an important role as they contribute disproportionately to a much larger number of cases including in the ongoing COVID-19 pandemic. Super spreaders have been reported for more than a century, but limited information is available in scientific literature. An epidemic containment strategy needs to include early identification of super spreaders to limit an explosive growth. Super spreaders tend to get stigmatized, resulting in late reporting and hiding of cases. It is important for program managers to be sensitive to the manner in which related information is shared with media and general public.

Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Betacoronavirus , COVID-19 , Humans , India/epidemiology , Pandemics , Public Health , SARS-CoV-2 , Severity of Illness Index