Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Microbiol ; 14: 1157608, 2023.
Article in English | MEDLINE | ID: covidwho-2324430

ABSTRACT

Introduction: Coronaviruses (CoVs) are naturally found in bats and can occasionally cause infection and transmission in humans and other mammals. Our study aimed to build a deep learning (DL) method to predict the adaptation of bat CoVs to other mammals. Methods: The CoV genome was represented with a method of dinucleotide composition representation (DCR) for the two main viral genes, ORF1ab and Spike. DCR features were first analyzed for their distribution among adaptive hosts and then trained with a DL classifier of convolutional neural networks (CNN) to predict the adaptation of bat CoVs. Results and discussion: The results demonstrated inter-host separation and intra-host clustering of DCR-represented CoVs for six host types: Artiodactyla, Carnivora, Chiroptera, Primates, Rodentia/Lagomorpha, and Suiformes. The DCR-based CNN with five host labels (without Chiroptera) predicted a dominant adaptation of bat CoVs to Artiodactyla hosts, then to Carnivora and Rodentia/Lagomorpha mammals, and later to primates. Moreover, a linear asymptotic adaptation of all CoVs (except Suiformes) from Artiodactyla to Carnivora and Rodentia/Lagomorpha and then to Primates indicates an asymptotic bats-other mammals-human adaptation. Conclusion: Genomic dinucleotides represented as DCR indicate a host-specific separation, and clustering predicts a linear asymptotic adaptation shift of bat CoVs from other mammals to humans via deep learning.

2.
Nat Microbiol ; 7(8): 1259-1269, 2022 08.
Article in English | MEDLINE | ID: covidwho-1972611

ABSTRACT

Pangolins are the most trafficked wild animal in the world according to the World Wildlife Fund. The discovery of SARS-CoV-2-related coronaviruses in Malayan pangolins has piqued interest in the viromes of these wild, scaly-skinned mammals. We sequenced the viromes of 161 pangolins that were smuggled into China and assembled 28 vertebrate-associated viruses, 21 of which have not been previously reported in vertebrates. We named 16 members of Hunnivirus, Pestivirus and Copiparvovirus pangolin-associated viruses. We report that the L-protein has been lost from all hunniviruses identified in pangolins. Sequences of four human-associated viruses were detected in pangolin viromes, including respiratory syncytial virus, Orthopneumovirus, Rotavirus A and Mammalian orthoreovirus. The genomic sequences of five mammal-associated and three tick-associated viruses were also present. Notably, a coronavirus related to HKU4-CoV, which was originally found in bats, was identified. The presence of these viruses in smuggled pangolins identifies these mammals as a potential source of emergent pathogenic viruses.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , Mammals , Pangolins , SARS-CoV-2/genetics
3.
BMJ Open ; 11(9): e047227, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1398666

ABSTRACT

OBJECTIVE: To evaluate epidemiological characteristics and transmission dynamics of COVID-19 outbreak resurged in Beijing and to assess the effects of three non-pharmaceutical interventions. DESIGN: Descriptive and modelling study based on surveillance data of COVID-19 in Beijing. SETTING: Outbreak in Beijing. PARTICIPANTS: The database included 335 confirmed cases of COVID-19. METHODS: To conduct spatiotemporal analyses of the outbreak, we collected individual records on laboratory-confirmed cases of COVID-19 from 11 June 2020 to 5 July 2020 in Beijing, and visitor flow and products transportation data of Xinfadi Wholesale Market. We also built a modified susceptible-exposed-infected-removed model to investigate the effect of interventions deployed in Beijing. RESULTS: We found that the staff working in the market (52.2%) and the people around 10 km to this epicentre (72.5%) were most affected, and the population mobility entering-exiting Xinfadi Wholesale Market significantly contributed to the spread of COVID-19 (p=0.021), but goods flow of the market had little impact on the virus spread (p=0.184). The prompt identification of Xinfadi Wholesale Market as the infection source could have avoided a total of 25 708 (95% CI 13 657 to 40 625) cases if unnoticed transmission lasted for a month. Based on the model, we found that active screening on targeted population by nucleic acid testing alone had the most significant effect. CONCLUSIONS: The non-pharmaceutical interventions deployed in Beijing, including localised lockdown, close-contact tracing and community-based testing, were proved to be effective enough to contain the outbreak. Beijing has achieved an optimal balance between epidemic containment and economic protection.


Subject(s)
COVID-19 , Beijing/epidemiology , China/epidemiology , Communicable Disease Control , Disease Outbreaks , Humans , SARS-CoV-2
4.
Nature ; 583(7815): 282-285, 2020 07.
Article in English | MEDLINE | ID: covidwho-17844

ABSTRACT

The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Eutheria/virology , Evolution, Molecular , Genome, Viral/genetics , Sequence Homology, Nucleic Acid , Amino Acid Sequence , Animals , Betacoronavirus/chemistry , Betacoronavirus/classification , COVID-19 , China/epidemiology , Chiroptera/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Disease Reservoirs/virology , Genomics , Humans , Malaysia , Pandemics , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Recombination, Genetic , SARS-CoV-2 , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL