Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Virol ; 96(17): e0006522, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-35993737

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a recently emerging bat-borne coronavirus responsible for high mortality rates in piglets. In vitro studies have indicated that SADS-CoV has a wide tissue tropism in different hosts, including humans. However, whether this virus potentially threatens other animals remains unclear. Here, we report the experimental infection of wild-type BALB/c and C57BL/6J suckling mice with SADS-CoV. We found that mice less than 7 days old are susceptible to the virus, which caused notable multitissue infections and damage. The mortality rate was the highest in 2-day-old mice and decreased in older mice. Moreover, a preliminary neuroinflammatory response was observed in 7-day-old SADS-CoV-infected mice. Thus, our results indicate that SADS-CoV has potential pathogenicity in young hosts. IMPORTANCE SADS-CoV, which likely has originated from bat coronaviruses, is highly pathogenic to piglets and poses a threat to the swine industry. Little is known about its potential to disseminate to other animals. No efficient treatment is available, and the quarantine strategy is the only preventive measure. In this study, we demonstrated that SADS-CoV can efficiently replicate in suckling mice younger than 7 days. In contrast to infected piglets, in which intestinal tropism is shown, SADS-CoV caused infection and damage in all murine tissues evaluated in this study. In addition, neuroinflammatory responses were detected in some of the infected mice. Our work provides a preliminary cost-effective model for the screening of antiviral drugs against SADS-CoV infection.


Subject(s)
Alphacoronavirus , Chiroptera , Coronavirus Infections , Swine Diseases , Alphacoronavirus/genetics , Animals , Diarrhea , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Swine
2.
Zool Res ; 43(4): 514-522, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35585799

ABSTRACT

Bats are reservoirs of various viruses. The widely distributed cave nectar bat ( Eonycteris spelaea) is known to carry both filoviruses and coronaviruses. However, the potential transmission of theses bat viruses to humans is not fully understood. In this study, we tracked 16 E. spelaea bats in Mengla County, Yunnan Province, China, using miniaturized GPS devices to investigate their movements and potential contact with humans. Furthermore, to determine the prevalence of coronavirus and filovirus infections, we screened for the nucleic acids of the Menglà virus (MLAV) and two coronaviruses (GCCDC1-CoV and HKU9-CoV) in anal swab samples taken from bats and for antibodies against these viruses in human serum samples. None of the serum samples were found to contain antibodies against the bat viruses. The GPS tracking results showed that the bats did not fly during the daytime and rarely flew to residential areas. The foraging range of individual bats also varied, with a mean cumulative nightly flight distance of 25.50 km and flight speed of up to 57.4 km/h. Taken together, these results suggest that the risk of direct transmission of GCCDC1-CoV, HKU9-CoV, and MLAV from E. spelaea bats to humans is very low under natural conditions.


Subject(s)
Chiroptera , Coronavirus Infections , Viruses , Animals , China/epidemiology , Coronavirus Infections/veterinary , Humans , Phylogeny , Plant Nectar
3.
J Virol ; 96(9): e0003822, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35420442

ABSTRACT

Due to the limitation of human studies with respect to individual difference or the accessibility of fresh tissue samples, how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in pathological complications in lung, the main site of infection, is still incompletely understood. Therefore, physiologically relevant animal models under realistic SARS-CoV-2 infection conditions would be helpful to our understanding of dysregulated inflammation response in lung in the context of targeted therapeutics. Here, we characterized the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicates human symptoms, including severe lung pathology and lymphopenia. We showed a reduction of lymphocyte populations and an increase of neutrophils in lung and then demonstrated the key role of neutrophil-mediated lung immunopathology in both mice and humans. Under severe conditions, neutrophils recruited by a chemokine-driven positive feedback produced elevated "fatal signature" proinflammatory genes and pathways related to neutrophil activation or releasing of granular content. In addition, we identified a new Cd177high cluster that is undergoing respiratory burst and Stfahigh cluster cells that may dampen antigen presentation upon infection. We also revealed the devastating effect of overactivated neutrophil by showing the highly enriched neutrophil extracellular traps in lung and a dampened B-cell function in either lung or spleen that may be attributed to arginine consumption by neutrophil. The current study helped our understanding of SARS-CoV-2-induced pneumonia and warranted the concept of neutrophil-targeting therapeutics in COVID-19 treatment. IMPORTANCE We demonstrated the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicated human symptoms, including severe lung pathology and lymphopenia. Our comprehensive study revealed the key role of neutrophil-mediated lung immunopathology in SARS-CoV-2-induced severe pneumonia, which not only helped our understanding of COVID-19 but also warranted the concept of neutrophil targeting therapeutics in COVID-19 treatment.


Subject(s)
COVID-19 , Lung , Neutrophils , Animals , COVID-19/immunology , Disease Models, Animal , Humans , Lung/pathology , Lung/virology , Lymphopenia/virology , Mice , Neutrophils/immunology , SARS-CoV-2 , Spleen/pathology , Spleen/virology
4.
J Virol ; 96(8): e0016922, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35343762

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV-1) and SARS-CoV-2 are highly pathogenic to humans and have caused pandemics in 2003 and 2019, respectively. Genetically diverse SARS-related coronaviruses (SARSr-CoVs) have been detected or isolated from bats, and some of these viruses have been demonstrated to utilize human angiotensin-converting enzyme 2 (ACE2) as a receptor and to have the potential to spill over to humans. A pan-sarbecovirus vaccine that provides protection against SARSr-CoV infection is urgently needed. In this study, we evaluated the protective efficacy of an inactivated SARS-CoV-2 vaccine against recombinant SARSr-CoVs carrying two different spike proteins (named rWIV1 and rRsSHC014S, respectively). Although serum neutralizing assays showed limited cross-reactivity between the three viruses, the inactivated SARS-CoV-2 vaccine provided full protection against SARS-CoV-2 and rWIV1 and partial protection against rRsSHC014S infection in human ACE2 transgenic mice. Passive transfer of SARS-CoV-2-vaccinated mouse sera provided low protection for rWIV1 but not for rRsSHC014S infection in human ACE2 mice. A specific cellular immune response induced by WIV1 membrane protein peptides was detected in the vaccinated animals, which may explain the cross-protection of the inactivated vaccine. This study shows the possibility of developing a pan-sarbecovirus vaccine against SARSr-CoVs for future preparedness. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlight the necessity of developing wide-spectrum vaccines against infection of various SARSr-CoVs. In this study, we tested the protective efficacy of the SARS-CoV-2 inactivated vaccine (IAV) against two SARSr-CoVs with different spike proteins in human ACE2 transgenic mice. We demonstrate that the SARS-CoV-2 IAV provides full protection against rWIV1 and partial protection against rRsSHC014S. The T-cell response stimulated by the M protein may account for the cross protection against heterogeneous SARSr-CoVs. Our findings suggest the feasibility of the development of pan-sarbecovirus vaccines, which can be a strategy of preparedness for future outbreaks caused by novel SARSr-CoVs from wildlife.


Subject(s)
COVID-19 Vaccines , Coronavirus Infections , Cross Protection , Spike Glycoprotein, Coronavirus , Vaccines, Inactivated , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Chiroptera , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cross Protection/immunology , Humans , Mice , Mice, Transgenic , SARS Virus/genetics , SARS Virus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Inactivated/immunology , Viral Zoonoses/prevention & control
5.
Signal Transduct Target Ther ; 7(1): 83, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35277473

ABSTRACT

SARS-CoV-2 induced marked lymphopenia in severe patients with COVID-19. However, whether lymphocytes are targets of viral infection is yet to be determined, although SARS-CoV-2 RNA or antigen has been identified in T cells from patients. Here, we confirmed that SARS-CoV-2 viral antigen could be detected in patient peripheral blood cells (PBCs) or postmortem lung T cells, and the infectious virus could also be detected from viral antigen-positive PBCs. We next prove that SARS-CoV-2 infects T lymphocytes, preferably activated CD4 + T cells in vitro. Upon infection, viral RNA, subgenomic RNA, viral protein or viral particle can be detected in the T cells. Furthermore, we show that the infection is spike-ACE2/TMPRSS2-independent through using ACE2 knockdown or receptor blocking experiments. Next, we demonstrate that viral antigen-positive T cells from patient undergone pronounced apoptosis. In vitro infection of T cells induced cell death that is likely in mitochondria ROS-HIF-1a-dependent pathways. Finally, we demonstrated that LFA-1, the protein exclusively expresses in multiple leukocytes, is more likely the entry molecule that mediated SARS-CoV-2 infection in T cells, compared to a list of other known receptors. Collectively, this work confirmed a SARS-CoV-2 infection of T cells, in a spike-ACE2-independent manner, which shed novel insights into the underlying mechanisms of SARS-CoV-2-induced lymphopenia in COVID-19 patients.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism , T-Lymphocytes/metabolism , Animals , Caco-2 Cells , Chlorocebus aethiops , Humans , Vero Cells
7.
Viruses ; 13(12)2021 12 11.
Article in English | MEDLINE | ID: mdl-34960752

ABSTRACT

Patients with COVID-19 generally raise antibodies against SARS-CoV-2 following infection, and the antibody level is positively correlated to the severity of disease. Whether the viral antibodies exacerbate COVID-19 through antibody-dependent enhancement (ADE) is still not fully understood. Here, we conducted in vitro assessment of whether convalescent serum enhanced SARS-CoV-2 infection or induced excessive immune responses in immune cells. Our data revealed that SARS-CoV-2 infection of primary B cells, macrophages and monocytes, which express variable levels of FcγR, could be enhanced by convalescent serum from COVID-19 patients. We also determined the factors associated with ADE, and found which showed a time-dependent but not viral-dose dependent manner. Furthermore, the ADE effect is not associated with the neutralizing titer or RBD antibody level when testing serum samples collected from different patients. However, it is higher in a medium level than low or high dilutions in a given sample that showed ADE effect, which is similar to dengue. Finally, we demonstrated more viral genes or dysregulated host immune gene expression under ADE conditions compared to the no-serum infection group. Collectively, our study provides insight into the understanding of an association of high viral antibody titer and severe lung pathology in severe patients with COVID-19.


Subject(s)
Antibody-Dependent Enhancement/immunology , Leukocytes/virology , SARS-CoV-2/pathogenicity , COVID-19/immunology , Cells, Cultured , Gene Expression Profiling , Humans , Immune Sera/immunology , Leukocytes/metabolism , Receptors, IgG/metabolism , Virus Replication/immunology
8.
Nat Commun ; 12(1): 4887, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34373446

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that is spreading rapidly, which seriously impacts global public health and economy. Thus, developing effective drugs remains urgent. We identify two potent antibodies, nCoVmab1 and nCoVmab2, targeting the SARS-CoV-2 spike protein receptor-binding domain (RBD) with high affinities from a naïve human phage-displayed Fab library. nCoVmab1 and nCoVmab2 neutralize authentic SARS-CoV-2 with picomolar and nanomolar IC50 values, respectively. No detectable defects of nCoVmab1 and nCoVmab2 are found during the preliminary druggability evaluation. nCoVmab1 could reduce viral titer and lung injury when administered prophylactically and therapeutically in human angiotensin-converting enzyme II (hACE2)-transgenic mice. Therefore, phage display platform could be efficiently used for rapid development of neutralizing monoclonal antibodies (nmabs) with clinical potential against emerging infectious diseases. In addition, we determinate epitopes in RBD of these antibodies to elucidate the neutralizing mechanism. We also convert nCoVmab1 and nCoVmab2 to their germline formats for further analysis, which reveals the contribution of somatic hypermutation (SHM) during nCoVmab1 and nCoVmab2 maturation. Our findings not only provide two highly potent nmabs against SARS-CoV-2 as prophylactic and therapeutic candidates, but also give some clues for development of anti-SARS-CoV-2 agents (e.g., drugs and vaccines) targeting the RBD.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/drug therapy , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Chlorocebus aethiops , Epitopes/immunology , Humans , Male , Mice , Mice, Transgenic , Protein Binding , Receptors, Virus/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus , Vero Cells
10.
Virol Sin ; 36(5): 879-889, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33835391

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic caused more than 96 million infections and over 2 million deaths worldwide so far. However, there is no approved vaccine available for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the disease causative agent. Vaccine is the most effective approach to eradicate a pathogen. The tests of safety and efficacy in animals are pivotal for developing a vaccine and before the vaccine is applied to human populations. Here we evaluated the safety, immunogenicity, and efficacy of an inactivated vaccine based on the whole viral particles in human ACE2 transgenic mouse and in non-human primates. Our data showed that the inactivated vaccine successfully induced SARS-CoV-2-specific neutralizing antibodies in mice and non-human primates, and subsequently provided partial (in low dose) or full (in high dose) protection of challenge in the tested animals. In addition, passive serum transferred from vaccine-immunized mice could also provide full protection from SARS-CoV-2 infection in mice. These results warranted positive outcomes in future clinical trials in humans.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19 , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/prevention & control , Mice , Mice, Transgenic , Primates , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Inactivated/immunology
12.
Viruses ; 13(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466539

ABSTRACT

Bats, the second largest order of mammals worldwide, harbor specific characteristics such as sustaining flight, a special immune system, unique habits, and ecological niches. In addition, they are the natural reservoirs of a variety of emerging or re-emerging zoonotic pathogens. Rhabdoviridae is one of the most diverse families of RNA viruses, which consists of 20 ecologically diverse genera, infecting plants, mammals, birds, reptiles, and fish. To date, three bat-related genera are described, named Lyssavirus, Vesiculovirus, and Ledantevirus. However, the prevalence and the distribution of these bat-related rhabdoviruses remain largely unknown, especially in China. To fill this gap, we performed a large molecular retrospective study based on the real-time reverse transcription polymerase chain reaction (RT-qPCR) detection of lyssavirus in bat samples (1044 brain and 3532 saliva samples, from 63 different bat species) originating from 21 provinces of China during 2006-2018. None of them were positive for lyssavirus, but six bat brains (0.6%) of Rhinolophus bat species, originating from Hubei and Hainan provinces, were positive for vesiculoviruses or ledanteviruses. Based on complete genomes, these viruses were phylogenetically classified into three putative new species, tentatively named Yinshui bat virus (YSBV), Taiyi bat virus (TYBV), and Qiongzhong bat virus (QZBV). These results indicate the novel rhabdoviruses circulated in different Chinese bat populations.


Subject(s)
Chiroptera/virology , Genome, Viral , Phylogeny , Rhabdoviridae Infections/veterinary , Rhabdoviridae/classification , Animals , Brain/virology , China/epidemiology , Retrospective Studies , Rhabdoviridae/isolation & purification , Rhabdoviridae Infections/epidemiology , Rhabdoviridae Infections/virology , Saliva/virology , Vesiculovirus/classification
14.
Emerg Microbes Infect ; 9(1): 2571-2577, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33196399

ABSTRACT

Following acute infection, individuals COVID-19 may still shed SARS-CoV-2 RNA. However, limited information is available regarding the active shedding period or whether infectious virus is also shed. Here, we monitored the clinical characteristics and virological features of 38 patients with COVID-19 (long-term carriers) who recovered from the acute disease, but still shed viral RNA for over 3 months. The median carrying history of the long-term carriers was 92 days after the first admission, and the longest carrying history was 118 days. Negative-positive viral RNA-shedding fluctuations were observed. Long-term carriers were mostly elderly people with a history of mild infection. Infectious SARS-CoV-2 was isolated from the sputum, where high level viral RNA was found. All nine full-length genomes of samples obtained in March-April 2020 matched early viral clades circulating in January-February 2020, suggesting that these patients persistently carried SARS-CoV-2 and were not re-infected. IgM and IgG antibodies and neutralizing-antibody profiles were similar between long-term carriers and recovered patients with similar disease courses. In summary, although patients with COVID-19 generated neutralizing antibodies, they may still shed infectious SARS-CoV-2 for over 3 months. These data imply that patients should be monitored after discharge to control future outbreaks.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , Virus Shedding , Adult , Aged , Antibodies, Neutralizing , Antibodies, Viral/blood , Carrier State , Female , Genome, Viral , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , RNA, Viral/isolation & purification , Sputum/virology
15.
J Infect Dis ; 223(4): 568-580, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33197260

ABSTRACT

BACKGROUND: The immune protective mechanisms during severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection remain to be deciphered for the development of an effective intervention approach. METHODS: We examined early responses of interleukin 37 (IL-37), a powerful anti-inflammatory cytokine, in 254 SARS-CoV-2-infected patients before any clinical intervention and determined its correlation with clinical prognosis. RESULTS: Our results demonstrated that SARS-CoV-2 infection causes elevation of plasma IL-37. Higher early IL-37 responses were correlated with earlier viral RNA negative conversion, chest computed tomographic improvement, and cough relief, consequently resulted in earlier hospital discharge. Further assays showed that higher IL-37 was associated with lower interleukin 6 and interleukin 8 (IL-8) and higher interferon α responses and facilitated biochemical homeostasis. Low IL-37 responses predicted severe clinical prognosis in combination with IL-8 and C-reactive protein. In addition, we observed that IL-37 administration was able to attenuate lung inflammation and alleviate respiratory tissue damage in human angiotensin-converting enzyme 2-transgenic mice infected with SARS-CoV-2. CONCLUSIONS: Overall, we found that IL-37 plays a protective role by antagonizing inflammatory responses while retaining type I interferon, thereby maintaining the functionalities of vital organs. IL-37, IL-8, and C-reactive protein might be formulated as a precise prediction model for screening severe clinical cases and have good value in clinical practice.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/virology , Interleukin-1/blood , Adult , Animals , C-Reactive Protein/metabolism , COVID-19/blood , Female , Humans , Inflammation/immunology , Inflammation/virology , Interleukin-8/blood , Male , Mice , Mice, Transgenic , Middle Aged
16.
Virology ; 551: 84-92, 2020 12.
Article in English | MEDLINE | ID: mdl-32859395

ABSTRACT

Mammalian orthoreovirus (MRV) infections are ubiquitous in mammals. Increasing evidence suggests that some MRVs can cause severe respiratory disease and encephalitis in humans and other animals. Previously, we isolated six bat MRV strains. However, the pathogenicity of these bat viruses remains unclear. In this study, we investigated the host range and pathogenicity of 3 bat MRV strains (WIV2, 3 and 7) which represent three serotypes. Our results showed that all of them can infect cell lines from different mammalian species and displayed different replication efficiency. The BALB/c mice infected by bat MRVs showed clinical symptoms with systematic infection especially in lung and intestines. Obvious tissue damage were found in all infected lungs. One of the strains, WIV7, showed higher replication efficiency in vitro and vivo and more severe pathogenesis in mice. Our results provide new evidence showing potential pathogenicity of bat MRVs in animals and probable risk in humans.


Subject(s)
Host Specificity , Orthoreovirus, Mammalian/pathogenicity , Pneumonia, Viral/virology , Reoviridae Infections/virology , Animals , Cell Line , Chiroptera , Female , Humans , Intestines/pathology , Intestines/virology , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Serogroup
17.
Nat Commun ; 11(1): 4207, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32826924

ABSTRACT

The rapid spread of coronavirus SARS-CoV-2 greatly threatens global public health but no prophylactic vaccine is available. Here, we report the generation of a replication-incompetent recombinant serotype 5 adenovirus, Ad5-S-nb2, carrying a codon-optimized gene encoding Spike protein (S). In mice and rhesus macaques, intramuscular injection with Ad5-S-nb2 elicits systemic S-specific antibody and cell-mediated immune (CMI) responses. Intranasal inoculation elicits both systemic and pulmonary antibody responses but weaker CMI response. At 30 days after a single vaccination with Ad5-S-nb2 either intramuscularly or intranasally, macaques are protected against SARS-CoV-2 challenge. A subsequent challenge reveals that macaques vaccinated with a 10-fold lower vaccine dosage (1 × 1010 viral particles) are also protected, demonstrating the effectiveness of Ad5-S-nb2 and the possibility of offering more vaccine dosages within a shorter timeframe. Thus, Ad5-S-nb2 is a promising candidate vaccine and warrants further clinical evaluation.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/administration & dosage , Adenoviridae/genetics , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Dose-Response Relationship, Immunologic , Female , HEK293 Cells , Humans , Immunity, Cellular , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Pneumonia, Viral/immunology , Respiratory System/pathology , Respiratory System/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/administration & dosage
18.
Cell Res ; 30(8): 670-677, 2020 08.
Article in English | MEDLINE | ID: mdl-32636454

ABSTRACT

The 2019 novel coronavirus (SARS-CoV-2) outbreak is a major challenge for public health. SARS-CoV-2 infection in human has a broad clinical spectrum ranging from mild to severe cases, with a mortality rate of ~6.4% worldwide (based on World Health Organization daily situation report). However, the dynamics of viral infection, replication and shedding are poorly understood. Here, we show that Rhesus macaques are susceptible to the infection by SARS-CoV-2. After intratracheal inoculation, the first peak of viral RNA was observed in oropharyngeal swabs one day post infection (1 d.p.i.), mainly from the input of the inoculation, while the second peak occurred at 5 d.p.i., which reflected on-site replication in the respiratory tract. Histopathological observation shows that SARS-CoV-2 infection can cause interstitial pneumonia in animals, characterized by hyperemia and edema, and infiltration of monocytes and lymphocytes in alveoli. We also identified SARS-CoV-2 RNA in respiratory tract tissues, including trachea, bronchus and lung; and viruses were also re-isolated from oropharyngeal swabs, bronchus and lung, respectively. Furthermore, we demonstrated that neutralizing antibodies generated from the primary infection could protect the Rhesus macaques from a second-round challenge by SARS-CoV-2. The non-human primate model that we established here provides a valuable platform to study SARS-CoV-2 pathogenesis and to evaluate candidate vaccines and therapeutics.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/immunology , Coronavirus Infections/pathology , Disease Models, Animal , Macaca mulatta/virology , Pneumonia, Viral/pathology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/virology , Female , Immunohistochemistry , Male , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/virology , RNA, Viral/genetics , Radiography, Thoracic , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Viral Load , Virus Replication
19.
Cell ; 182(1): 50-58.e8, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32516571

ABSTRACT

COVID-19 has spread worldwide since 2019 and is now a severe threat to public health. We previously identified the causative agent as a novel SARS-related coronavirus (SARS-CoV-2) that uses human angiotensin-converting enzyme 2 (hACE2) as the entry receptor. Here, we successfully developed a SARS-CoV-2 hACE2 transgenic mouse (HFH4-hACE2 in C3B6 mice) infection model. The infected mice generated typical interstitial pneumonia and pathology that were similar to those of COVID-19 patients. Viral quantification revealed the lungs as the major site of infection, although viral RNA could also be found in the eye, heart, and brain in some mice. Virus identical to SARS-CoV-2 in full-genome sequences was isolated from the infected lung and brain tissues. Last, we showed that pre-exposure to SARS-CoV-2 could protect mice from severe pneumonia. Our results show that the hACE2 mouse would be a valuable tool for testing potential vaccines and therapeutics.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/pathology , Disease Models, Animal , Mice, Transgenic , Pneumonia, Viral/pathology , Angiotensin-Converting Enzyme 2 , Animals , COVID-19 , Female , Humans , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/virology , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic/genetics , Pandemics , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2 , Viral Tropism , Weight Loss
20.
Nature ; 582(7811): 289-293, 2020 06.
Article in English | MEDLINE | ID: mdl-32272481

ABSTRACT

A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the aetiological agent responsible for the 2019-2020 viral pneumonia outbreak of coronavirus disease 2019 (COVID-19)1-4. Currently, there are no targeted therapeutic agents for the treatment of this disease, and effective treatment options remain very limited. Here we describe the results of a programme that aimed to rapidly discover lead compounds for clinical use, by combining structure-assisted drug design, virtual drug screening and high-throughput screening. This programme focused on identifying drug leads that target main protease (Mpro) of SARS-CoV-2: Mpro is a key enzyme of coronaviruses and has a pivotal role in mediating viral replication and transcription, making it an attractive drug target for SARS-CoV-25,6. We identified a mechanism-based inhibitor (N3) by computer-aided drug design, and then determined the crystal structure of Mpro of SARS-CoV-2 in complex with this compound. Through a combination of structure-based virtual and high-throughput screening, we assayed more than 10,000 compounds-including approved drugs, drug candidates in clinical trials and other pharmacologically active compounds-as inhibitors of Mpro. Six of these compounds inhibited Mpro, showing half-maximal inhibitory concentration values that ranged from 0.67 to 21.4 µM. One of these compounds (ebselen) also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of our screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases for which no specific drugs or vaccines are available.


Subject(s)
Betacoronavirus/chemistry , Cysteine Endopeptidases/chemistry , Drug Discovery/methods , Models, Molecular , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , COVID-19 , Cells, Cultured/virology , Coronavirus 3C Proteases , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Drug Design , Drug Evaluation, Preclinical , Humans , Pandemics , Pneumonia, Viral/enzymology , Pneumonia, Viral/virology , Protease Inhibitors/pharmacology , Protein Structure, Tertiary , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL