Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Innovation (N Y) ; : 100181, 2021 Nov 03.
Article in English | MEDLINE | ID: covidwho-1595417

ABSTRACT

Most COVID-19 convalescents can build effective anti-SARS-CoV-2 humoral immunity, but it remains unclear how long it can maintain and how efficiently it can prevent the reinfection of the emerging SARS-CoV-2 variants. Here, we tested the sera from 248 COVID-19 convalescents around one year post-infection in Wuhan, the earliest known epicenter. SARS-CoV-2 immunoglobulins G (IgG) were well maintained in most patients and potently neutralizes the infection of the original strain and the B.1.1.7 variant. However, varying degrees of immune escape was observed on the other tested variants in a patient-specific manner, with individuals showing remarkably broad neutralization potency. The immune escape can be largely attributed to several critical spike mutations. These results suggest that SARS-CoV-2 can elicit long-lasting immunity but escaped by the emerging variants.

2.
Preprint in English | Other preprints | ID: ppcovidwho-295296

ABSTRACT

Background More than ten novel COVID-19 vaccines have been approved with protections against SARS-CoV-2 infections ranges between 52-95%. It is of great interest to the vaccinees who have received the COVID-19 vaccines, vaccine developers and authorities to identify the non-responders in a timely manner so intervention can take place by either giving additional boosts of the same vaccine or switching to a different vaccine to improve the protection against the SARS-CoV-2 infections. A robust correlation was seen between binding antibody titer and efficacy (p=0.93) in the clinic studies of 7 COVID-19 vaccines, so it is of urgency to develop a simple POCT for vaccinees to self-assess their immune response at home. Methods Using CHO cell-expressed full length SARS-CoV2 S1 protein as coating antigen on colloidal gold particles, a SARS-CoV-2 S1 IgG-IgM antibody lateral flow test kit (POCT) was developed. The test was validated with negative human sera collected prior to the COVID-19 outbreaks, and blood samples from human subjects prior, during, and post-immunization of COVID-19 vaccines. Results The specificity of the POCT was 99.0%, as examined against 947 normal human sera and 20 whole blood samples collected pre-immunization. The limit of detection was 50 IU/mL of pseudovirus neutralizing titer (PVNT) using human anti-SARS-2 neutralizing standards from convalescent sera. The sensitivity of POCT for SARS-CoV-2 S1 protein antibody IgG-IgM was compared with SARS-CoV-2 RBD antibody ELISA and determined to be 100% using 23 blood samples from vaccinated human subjects and 10 samples from non-vaccinated ones. Whole blood samples were collected from 119 human subjects (ages between 22-61 years) prior to, during, and post-vaccination of five different COVID-19 vaccines. Among them, 115 people tested positive for SARS-CoV-2 S1 antibodies (showing positive at least once) and 4 people tested negative (tested negative at least twice on different days), demonstrating 96.64% of seroconversion after full-vaccination. 92.3% (36/39) of the human subjects who were younger than 45 achieved seroconversion within 2 weeks while only 57.1% (4/7) of subjects older than 45 tested positive for S1 antibodies, suggesting that younger people develop protection much faster than older ones. Even though the S1 antibody level in 88% of human subjects vaccinated with inactivated virus dropped below 50 IU/mL two months later, one boost could quickly raise the S1 antibody titer above 50 IU/mL of PVNT, indicates that the initial vaccination was successful and immunization memory was developed. Conclusion Using the lateral flow tests of SARS-CoV2 S1 IgG+IgM, vaccinated human subjects can easily self-assess the efficacy of their vaccination at home. The vaccine developer could quickly identify those non-responders and give them an additional boost to improve the efficacy of their vaccines. Vaccinees who failed in response could switch to different types of COVID-19 vaccines since there are more than 10 COVID-19 vaccines approved using three different platform technologies. Highlights More than ten novel COVID-19 vaccines have been approved with protections against SARS-CoV-2 infections ranges between 52-95%. It is of great interest to the vaccinees who have received the COVID-19 vaccines, vaccine developers and authorities to identify the non-responders in a timely manner. A highly specific and very simple lateral flow test kit for measurement of SARS-CoV-2 S1IgG+IgM antibodies post-immunization of COVID-19 vaccine using peripheral blood was developed as a home-test assay with a limit of detection (LOD) at 50 IU/mL of pseudovirus neutralizing titer (PVNT). After full vaccinations with COVID-19 vaccines, 96.6% of the volunteers successfully achieved the seroconversion of SARS-CoV-2 S1 IgG+IgM antibody. 92.3% (36/39) of the human subjects who were younger than 45 achieved seroconversion within 2 weeks while only 57.1% (4/7) of subjects older than 45 tested positive for S1 antibodies, suggesting that younger peopl develop protection much faster than older ones. Even though the S1 antibody level in 88% of human subjects vaccinated with inactivated virus dropped below the detection 2-6 months later, one boost could quickly raise the S1 antibody titer above 50 IU/mL of PVNT, indicating that the initial vaccination was successful and immunization memory was developed.

3.
Biochim Biophys Acta Proteins Proteom ; 1870(2): 140736, 2021 Nov 11.
Article in English | MEDLINE | ID: covidwho-1509583

ABSTRACT

We present an integrated analysis of urine and serum proteomics and clinical measurements in asymptomatic, mild/moderate, severe and convalescent cases of COVID-19. We identify the pattern of immune response during COVID-19 infection. The immune response is activated in asymptomatic infection, but is dysregulated in mild and severe COVID-19 patients. Our data suggest that the turning point depends on the function of myeloid cells and neutrophils. In addition, immune defects persist into the recovery stage, until 12 months after diagnosis. Moreover, disorders of cholesterol metabolism span the entire progression of the disease, starting from asymptomatic infection and lasting to recovery. Our data suggest that prolonged dysregulation of the immune response and cholesterol metabolism might be the pivotal causative agent of other potential sequelae. Our study provides a comprehensive understanding of COVID-19 immunopathogenesis, which is instructive for the development of early intervention strategies to ameliorate complex disease sequelae.

4.
Biosens Bioelectron ; 196: 113701, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1458836

ABSTRACT

Although CRISPR-Cas12a and CRISPR-Cas13a systems work individually effective on gene detection, their multiplex detection capability is limited due to the lack of specific probe cleavage mechanism. Herein we present a high-efficient dual-gene diagnostic technique based on the orthogonal DNA/RNA collateral cleavage mechanism of Cas12a/Cas13a system. In this design, dual-gene amplified products from the multiplex recombinase polymerase amplification (RPA) were simultaneously detected by Cas12a and Cas13a assay in a single tube. The resulting orthogonal DNA/RNA collateral cleavage can specifically illuminate two spectral differentiated DNA and RNA probes, respectively. By integrating with the smartphone-based fluorescence readout, a portable detection platform is achieved. As a proof-of-concept, reliable dual-gene detection of SARS-CoV-2 and African Swine fever virus (ASFV) were demonstrated, exhibiting 100% sensitivity and specificity for clinical samples analysis (32 swab specimens for SARS-CoV-2 and 35 ASFV suspected swine blood samples). This developed portable dual-gene detection platform can provide accurate point-of-care screening of infectious diseases in resources-limited settings.


Subject(s)
African Swine Fever Virus , Biosensing Techniques , COVID-19 , Animals , CRISPR-Cas Systems/genetics , Humans , SARS-CoV-2 , Swine
5.
Clin Infect Dis ; 2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1450372

ABSTRACT

BACKGROUND: The longitudinal antigen-specific immunity in COVID-19 convalescents is crucial for long-term protection upon individual re-exposure to SARS-CoV-2, and even more pivotal for ultimately achieving population-level immunity. To better understand the features of immune memory in individuals with different disease severities at one year post-disease onset we conducted this cohort study. METHODS: We conducted a systematic antigen-specific immune evaluation in 101 COVID-19 convalescents, who had asymptomatic, mild, moderate, or severe disease, through two visits at months 6 and 12 post-disease onset. The SARS-CoV-2-specific antibodies, comprising NAb, IgG, and IgM, were assessed by mutually corroborated assays, i.e. neutralization, enzyme-linked immunosorbent assay (ELISA), and microparticle chemiluminescence immunoassay (MCLIA). Meanwhile, the T-cell memory against SARS-CoV-2 spike, membrane and nucleocapsid proteins was tested through enzyme-linked immunospot assay (ELISpot), intracellular cytokine staining (ICS), and tetramer staining-based flow cytometry, respectively. RESULTS: SARS-CoV-2-specific IgG antibodies, and also NAb can persist among over 95% COVID-19 convalescents from 6 months to 12 months after disease onset. At least 19/71 (26%) of COVID-19 convalescents (double positive in ELISA and MCLIA) had detectable circulating IgM antibody against SARS-CoV-2 at 12m post-disease onset. Notably, the percentages of convalescents with positive SARS-CoV-2-specific T-cell responses (at least one of the SARS-CoV-2 antigen S1, S2, M and N protein) were 71/76 (93%) and 67/73 (92%) at 6m and 12m, respectively. Furthermore, both antibody and T-cell memory levels of the convalescents were positively associated with their disease severity. CONCLUSIONS: SARS-CoV-2-specific cellular and humoral immunities are durable at least until one year after disease onset.

6.
Virol Sin ; 36(5): 934-947, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1293454

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has precipitated multiple variants resistant to therapeutic antibodies. In this study, 12 high-affinity antibodies were generated from convalescent donors in early outbreaks using immune antibody phage display libraries. Of them, two RBD-binding antibodies (F61 and H121) showed high-affinity neutralization against SARS-CoV-2, whereas three S2-target antibodies failed to neutralize SARS-CoV-2. Following structure analysis, F61 identified a linear epitope located in residues G446-S494, which overlapped with angiotensin-converting enzyme 2 (ACE2) binding sites, while H121 recognized a conformational epitope located on the side face of RBD, outside from ACE2 binding domain. Hence the cocktail of the two antibodies achieved better performance of neutralization to SARS-CoV-2. Importantly, these two antibodies also showed efficient neutralizing activities to the variants including B.1.1.7 and B.1.351, and reacted with mutations of N501Y, E484K, and L452R, indicated that it may also neutralize the recent India endemic strain B.1.617. The unchanged binding activity of F61 and H121 to RBD with multiple mutations revealed a broad neutralizing activity against variants, which mitigated the risk of viral escape. Our findings revealed the therapeutic basis of cocktail antibodies against constantly emerging SARS-CoV-2 variants and provided promising candidate antibodies to clinical treatment of COVID-19 patients infected with broad SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Humans , Spike Glycoprotein, Coronavirus
7.
J Hazard Mater Lett ; 2: 100027, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1233433

ABSTRACT

Facing the ongoing coronavirus infectious disease-2019 (COVID-19) pandemic, many studies focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in indoor environment, on solid surface or in wastewater. It remains unclear whether SARS-CoV-2 can spill over into outdoor environments and impose transmission risks to surrounding people and communities. In this study, we investigated the presence of SARS-CoV-2 by measuring viral RNA in 118 samples from outdoor environment of three hospitals in Wuhan. We detected SARS-CoV-2 in soils (205-550 copies/g), aerosols (285-1,130 copies/m3) and wastewaters (255-18,744 copies/L) in locations close to hospital departments receiving COVID-19 patients or in wastewater treatment sectors. These findings revealed a significant viral spillover in hospital outdoor environments that was possibly caused by respiratory droplets from patients or aerosolized particles from wastewater containing SARS-CoV-2. In contrast, SARS-CoV-2 was not detected in other areas or on surfaces with regular implemented disinfection. Soils may behave as viral warehouse through deposition and serve as a secondary source spreading SARS-CoV-2 for a prolonged time. For the first time, our findings demonstrate that there are high-risk areas out of expectation in hospital outdoor environments to spread SARS-CoV-2, calling for sealing of wastewater treatment unit and complete sanitation to prevent COVID-19 transmission risks.

8.
Clin Infect Dis ; 71(16): 2066-2072, 2020 11 19.
Article in English | MEDLINE | ID: covidwho-1153154

ABSTRACT

BACKGROUND: Thousands of medical staff have been infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with hundreds of deaths reported. Such loss could be prevented if there were a serologic assay for SARS-CoV-2-specific antibodies for serological surveillance of its infection at the early stage of disease. METHODS: Using Chinese hamster ovarian (CHO) cell-expressed full-length SARS-CoV-2 S1 protein as capturing antigen, a coronavirus disease 2019 (COVID-19)/SARS-CoV-2 S1 serology enzyme-linked immunosorbent assay (ELISA) kit was developed and validated with negative samples collected prior to the outbreak or during the outbreak and positive samples from patients confirmed with COVID-19. RESULTS: The specificity of the ELISA kit was 97.5%, as examined against total 412 normal human samples. The sensitivity was 97.1% by testing against 69 samples from hospitalized and/or recovered COVID-19 patients. The overall accuracy rate reached 97.3%. The assay was able to detect SARS-CoV-2 antibody on day 1 after the onset of COVID-19 disease. The average antibody levels increased during hospitalization and 14 days after discharge. SARS-CoV-2 antibodies were detected in 28 of 276 asymptomatic medical staff and 1 of 5 nucleic acid test-negative "close contacts" of COVID-19 patients. CONCLUSIONS: With the assays developed here, we can screen medical staff, incoming patients, passengers, and people who are in close contact with the confirmed patients to identify the "innocent viral spreaders," protect the medical staff, and stop further spread of the virus.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , COVID-19/epidemiology , Animals , CHO Cells , COVID-19/virology , Cricetulus , Enzyme-Linked Immunosorbent Assay , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Serologic Tests
9.
Sci Rep ; 11(1): 6811, 2021 03 24.
Article in English | MEDLINE | ID: covidwho-1149746

ABSTRACT

High rate of cardiovascular disease (CVD) has been reported among patients with coronavirus disease 2019 (COVID-19). Importantly, CVD, as one of the comorbidities, could also increase the risks of the severity of COVID-19. Here we identified phospholipase A2 group VII (PLA2G7), a well-studied CVD biomarker, as a hub gene in COVID-19 though an integrated hypothesis-free genomic analysis on nasal swabs (n = 486) from patients with COVID-19. PLA2G7 was further found to be predominantly expressed by proinflammatory macrophages in lungs emerging with progression of COVID-19. In the validation stage, RNA level of PLA2G7 was identified in nasal swabs from both COVID-19 and pneumonia patients, other than health individuals. The positive rate of PLA2G7 were correlated with not only viral loads but also severity of pneumonia in non-COVID-19 patients. Serum protein levels of PLA2G7 were found to be elevated and beyond the normal limit in COVID-19 patients, especially among those re-positive patients. We identified and validated PLA2G7, a biomarker for CVD, was abnormally enhanced in COVID-19 at both nucleotide and protein aspects. These findings provided indications into the prevalence of cardiovascular involvements seen in patients with COVID-19. PLA2G7 could be a potential prognostic and therapeutic target in COVID-19.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , COVID-19/metabolism , Cardiovascular Diseases/metabolism , Macrophages/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/blood , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Biomarkers/metabolism , COVID-19/epidemiology , COVID-19/immunology , COVID-19/pathology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/virology , China/epidemiology , Data Mining/methods , Humans , Macrophages/immunology , Macrophages/pathology , Polymorphism, Single Nucleotide , SARS-CoV-2/isolation & purification , Transcriptional Activation , Up-Regulation
10.
ACS Sens ; 6(3): 1086-1093, 2021 03 26.
Article in English | MEDLINE | ID: covidwho-1120724

ABSTRACT

The outbreak of COVID-19 caused a worldwide public health crisis. Large-scale population screening is an effective means to control the spread of COVID-19. Reverse transcription-polymerase chain reaction (RT-qPCR) and serology assays are the most available techniques for SARS-CoV-2 detection; however, they suffer from either less sensitivity and accuracy or low instrument accessibility for screening. To balance the sensitivity, specificity, and test availability, here, we developed enhanced colorimetry, which is termed as a magnetic pull-down-assisted colorimetric method based on the CRISPR/Cas12a system (M-CDC), for SARS-CoV-2 detection. By this method, SARS-CoV-2 RNA from synthetic sequences and cultured viruses can be detected by the naked eye based on gold nanoparticle (AuNP) probes, with a detection limit of 50 RNA copies per reaction. With CRISPR/Cas12a-assisted detection, SARS-CoV-2 can be specifically distinguished from other closely related viruses. M-CDC was further used to analyze 41 clinical samples, whose performance was 95.12%, consistent with that of an approved Clinical RT-qPCR Diagnosis kit. The developed M-CDC method is not dependent on sophisticated instruments, which makes it potentially valuable to be applied for SARS-CoV-2 screening under poor conditions.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Viral/analysis , SARS-CoV-2/genetics , Bacterial Proteins , CRISPR-Associated Proteins , CRISPR-Cas Systems , Cell Line, Tumor , Colorimetry , DNA/chemistry , DNA Probes , Endodeoxyribonucleases , Gold/chemistry , Humans , Metal Nanoparticles/chemistry
11.
Biotechnol Bioeng ; 118(5): 2053-2066, 2021 05.
Article in English | MEDLINE | ID: covidwho-1092501

ABSTRACT

Polymerase chain reaction (PCR), a central technology for molecular diagnostics, is highly sensitive but susceptible to the risk of false positives caused by aerosol contamination, especially when an end-point detection mode is applied. Here, we proposed a solution by designing a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 eraser strategy for eliminating potential contamination amplification. The CRISPR/Cas9 engineered eraser is firstly adopted into artpcr reverse-transcription PCR (RT-PCR) system to achieve contamination-free RNA detection. Subsequently, we extended this CRISPR/Cas9 eraser to the PCR system. We engineered conventional PCR primers to enable the amplified products to contain an implanted NGG (protospacer adjacent motif, PAM) site, which is used as a code for specific CRISPR/Cas9 recognition. Pre-incubation of Cas9/sgRNA with PCR mix leads to a selective cleavage of contamination amplicons, thus only the template DNA is amplified. The developed CRISPR/Cas9 eraser, adopted by both RT-PCR and PCR systems, showed high-fidelity detection of SARS-CoV-2 and African swine fever virus with a convenient strip test.


Subject(s)
CRISPR-Cas Systems , Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , African Swine Fever Virus/isolation & purification , Animals , Humans , RNA, Guide , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Swine
12.
Angewandte Chemie ; 133(10):5367-5375, 2021.
Article in English | ProQuest Central | ID: covidwho-1092137

ABSTRACT

Few methods for the detection of SARS‐CoV‐2 currently have the capability to simultaneously detect two genes in a single test, which is a key measure to improve detection accuracy, as adopted by the gold standard RT‐qPCR method. Developed here is a CRISPR/Cas9‐mediated triple‐line lateral flow assay (TL‐LFA) combined with multiplex reverse transcription‐recombinase polymerase amplification (RT‐RPA) for rapid and simultaneous dual‐gene detection of SARS‐CoV‐2 in a single strip test. This assay is characterized by the detection of envelope (E) and open reading frame 1ab (Orf1ab) genes from cell‐cultured SARS‐CoV‐2 and SARS‐CoV‐2 viral RNA standards, showing a sensitivity of 100 RNA copies per reaction (25 μL). Furthermore, dual‐gene analysis of 64 nasopharyngeal swab samples showed 100 % negative predictive agreement and 97.14 % positive predictive agreement. This platform will provide a more accurate and convenient pathway for diagnosis of COVID‐19 or other infectious diseases in low‐resource regions.

13.
ACS Nano ; 15(1): 1167-1178, 2021 01 26.
Article in English | MEDLINE | ID: covidwho-1014984

ABSTRACT

Existing methods for RNA diagnostics, such as reverse transcription PCR (RT-PCR), mainly rely on nucleic acid amplification (NAA) and RT processes, which are known to introduce substantial issues, including amplification bias, cross-contamination, and sample loss. To address these problems, we introduce a confinement effect-inspired Cas13a assay for single-molecule RNA diagnostics, eliminating the need for NAA and RT. This assay involves confining the RNA-triggered Cas13a catalysis system in cell-like-sized reactors to enhance local concentrations of target and reporter simultaneously, via droplet microfluidics. It achieves >10 000-fold enhancement in sensitivity when compared to the bulk Cas13a assay and enables absolute digital single-molecule RNA quantitation. We experimentally demonstrate its broad applicability for precisely counting microRNAs, 16S rRNAs, and SARS-CoV-2 RNA from synthetic sequences to clinical samples with excellent accuracy. Notably, this direct RNA diagnostic technology enables detecting a wide range of RNA molecules at the single-molecule level. Moreover, its simplicity, universality, and excellent quantification capability might render it to be a dominant rival to RT-qPCR.


Subject(s)
CRISPR-Cas Systems , Microfluidics , RNA/analysis , Cell Line, Tumor , Enterococcus faecalis , Escherichia coli , Humans , Klebsiella pneumoniae , MCF-7 Cells , MicroRNAs/analysis , Pseudomonas aeruginosa , RNA, Ribosomal, 16S/analysis , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Staphylococcus aureus
14.
Angew Chem Int Ed Engl ; 60(10): 5307-5315, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-970071

ABSTRACT

Few methods for the detection of SARS-CoV-2 currently have the capability to simultaneously detect two genes in a single test, which is a key measure to improve detection accuracy, as adopted by the gold standard RT-qPCR method. Developed here is a CRISPR/Cas9-mediated triple-line lateral flow assay (TL-LFA) combined with multiplex reverse transcription-recombinase polymerase amplification (RT-RPA) for rapid and simultaneous dual-gene detection of SARS-CoV-2 in a single strip test. This assay is characterized by the detection of envelope (E) and open reading frame 1ab (Orf1ab) genes from cell-cultured SARS-CoV-2 and SARS-CoV-2 viral RNA standards, showing a sensitivity of 100 RNA copies per reaction (25 µL). Furthermore, dual-gene analysis of 64 nasopharyngeal swab samples showed 100 % negative predictive agreement and 97.14 % positive predictive agreement. This platform will provide a more accurate and convenient pathway for diagnosis of COVID-19 or other infectious diseases in low-resource regions.


Subject(s)
COVID-19/diagnosis , CRISPR-Cas Systems , Genes, Viral , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , COVID-19/virology , Humans , Nasopharynx/virology , RNA, Viral , SARS-CoV-2/genetics , Sensitivity and Specificity
15.
Diagn Microbiol Infect Dis ; 98(4): 115199, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-741168

ABSTRACT

COVID-19 positive (194) and negative (212) pneumonia patients were selected to analyze bacterial pathogens coinfection. Results showed that 50% of COVID-19 patients were coinfected or carried bacterial pathogens. Bordetella pertussis infection rate was significantly higher in positive patients. Consequently, preventions should be taken to control bacterial pathogens coinfection in COVID-19 patients.


Subject(s)
Coinfection/epidemiology , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Pseudomonas Infections/epidemiology , Whooping Cough/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , Bordetella pertussis/isolation & purification , COVID-19 , Child , Child, Preschool , Coinfection/microbiology , Coinfection/pathology , Female , Humans , Infant , Male , Middle Aged , Pandemics , Pseudomonas aeruginosa/isolation & purification , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/pathology , SARS-CoV-2 , Young Adult
16.
Sci Total Environ ; 741: 140445, 2020 Nov 01.
Article in English | MEDLINE | ID: covidwho-610875

ABSTRACT

The outbreak of coronavirus infectious disease-2019 (COVID-19) pneumonia raises the concerns of effective deactivation of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in medical wastewater by disinfectants. In this study, we evaluated the presence of SARS-CoV-2 viral RNA in septic tanks of Wuchang Cabin Hospital and found a striking high level of (0.5-18.7) × 103 copies/L after disinfection with sodium hypochlorite. Embedded viruses in stool particles might be released in septic tanks, behaving as a secondary source of SARS-CoV-2 and potentially contributing to its spread through drainage pipelines. Current recommended disinfection strategy (free chlorine ≥0.5 mg/L after at least 30 min suggested by World Health Organization; free chlorine above 6.5 mg/L after 1.5-h contact by China Centers for Disease Control and Prevention) needs to be reevaluated to completely remove SARS-CoV-2 viral RNA in non-centralized disinfection system and effectively deactivate SARS-CoV-2. The effluents showed negative results for SARS-CoV-2 viral RNA when overdosed with sodium hypochlorite but had high a level of disinfection by-product residuals, possessing significant ecological risks.


Subject(s)
Coronavirus Infections , Disinfection , Pandemics , Pneumonia, Viral , Waste Water , Betacoronavirus , COVID-19 , China , Humans , Motor Vehicles , RNA, Viral/analysis , SARS-CoV-2
17.
Anal Chem ; 92(13): 9399-9404, 2020 07 07.
Article in English | MEDLINE | ID: covidwho-342738

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a public health emergency. The reverse transcriptase real-time quantitative PCR (qRT-PCR) test is currently considered as the gold standard in the laboratory for the etiological detection of COVID-19. However, qRT-PCR results could be false-negative due to the inadequate sensitivity of qRT-PCR. In this study, we have developed and evaluated a novel one-step single-tube nested quantitative real-time PCR (OSN-qRT-PCR) assay for the highly sensitive detection of SARS-CoV-2 targeting the ORF1ab and N genes. The sensitivity of the OSN-qRT-PCR assay was 1 copy/reaction and 10-fold higher than that of the commercial qRT-PCR kit (10 copies/reaction). The clinical performance of the OSN-qRT-PCR assay was evaluated using 181 clinical samples. Among them, 14 qRT-PCR-negative samples (7 had no repetitive results and 7 had no cycle threshold (CT) values) were detected by OSN-qRT-PCR. Moreover, the 7 qRT-PCR-positives in the qRT-PCR gray zone (CT values of ORF1ab ranged from 37.48 to 39.07, and CT values of N ranged from 37.34 to 38.75) were out of the gray zone and thus were deemed to be positive by OSN-qRT-PCR, indicating that the positivity of these samples is confirmative. Compared to the qRT-PCR kit, the OSN-qRT-PCR assay revealed higher sensitivity and specificity, showing better suitability to clinical applications for the detection of SARS-CoV-2 in patients with low viral load.


Subject(s)
Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Real-Time Polymerase Chain Reaction/methods , Adult , Aged , Aged, 80 and over , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Female , Humans , Male , Middle Aged , Nucleocapsid Proteins/genetics , Pandemics , Phosphoproteins , Pneumonia, Viral/virology , Polyproteins , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2 , Sensitivity and Specificity , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...