Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
J Med Virol ; : e28326, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2233994

ABSTRACT

The initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants, BA.1 and BA.2, are being progressively displaced by BA.5 in many countries. To provide insight on the replacement of BA.2 by BA.5 as the dominant SARS-CoV-2 variant, we performed a comparative analysis of Omicron BA.2.12.1 and BA.5.2 variants in cell culture and hamster models. We found that BA.5.2 exhibited enhanced replicative kinetics over BA.2.12.1 in vitro and in vivo, which is evidenced by the dominant BA.5.2 viral genome detected at different time points, regardless of immune selection pressure with vaccine-induced serum antibodies. Utilizing reverse genetics, we constructed a mutant SARS-CoV-2 carrying spike F486V substitution, which is an uncharacterized mutation that concurrently discriminates Omicron BA.5.2 from BA.2.12.1 variant. We noticed that the 486th residue does not confer viral replication advantage to the virus. We also found that 486V displayed generally reduced immune evasion capacity when compared with its predecessor, 486F. However, the surge of fitness in BA.5.2 over BA.2.12.1 was not due to stand-alone F486V substitution but as a result of the combination of multiple mutations. Our study upholds the urgency for continuous monitoring of SARS-CoV-2 Omicron variants with enhanced replication fitness.

2.
Protein Cell ; 14(1): 37-50, 2023 01.
Article in English | MEDLINE | ID: covidwho-2222720

ABSTRACT

The twenty-first century has already recorded more than ten major epidemics or pandemics of viral disease, including the devastating COVID-19. Novel effective antivirals with broad-spectrum coverage are urgently needed. Herein, we reported a novel broad-spectrum antiviral compound PAC5. Oral administration of PAC5 eliminated HBV cccDNA and reduced the large antigen load in distinct mouse models of HBV infection. Strikingly, oral administration of PAC5 in a hamster model of SARS-CoV-2 omicron (BA.1) infection significantly decreases viral loads and attenuates lung inflammation. Mechanistically, PAC5 binds to a pocket near Asp49 in the RNA recognition motif of hnRNPA2B1. PAC5-bound hnRNPA2B1 is extensively activated and translocated to the cytoplasm where it initiates the TBK1-IRF3 pathway, leading to the production of type I IFNs with antiviral activity. Our results indicate that PAC5 is a novel small-molecule agonist of hnRNPA2B1, which may have a role in dealing with emerging infectious diseases now and in the future.


Subject(s)
Antiviral Agents , Hepatitis B virus , Heterogeneous-Nuclear Ribonucleoprotein Group A-B , SARS-CoV-2 , Animals , Mice , Antiviral Agents/pharmacology , COVID-19 , Interferon Type I/metabolism , SARS-CoV-2/drug effects , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/antagonists & inhibitors
3.
J Med Virol ; : e28326, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2127870

ABSTRACT

The initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants, BA.1 and BA.2, are being progressively displaced by BA.5 in many countries. To provide insight on the replacement of BA.2 by BA.5 as the dominant SARS-CoV-2 variant, we performed a comparative analysis of Omicron BA.2.12.1 and BA.5.2 variants in cell culture and hamster models. We found that BA.5.2 exhibited enhanced replicative kinetics over BA.2.12.1 in vitro and in vivo, which is evidenced by the dominant BA.5.2 viral genome detected at different time points, regardless of immune selection pressure with vaccine-induced serum antibodies. Utilizing reverse genetics, we constructed a mutant SARS-CoV-2 carrying spike F486V substitution, which is an uncharacterized mutation that concurrently discriminates Omicron BA.5.2 from BA.2.12.1 variant. We noticed that the 486th residue does not confer viral replication advantage to the virus. We also found that 486V displayed generally reduced immune evasion capacity when compared with its predecessor, 486F. However, the surge of fitness in BA.5.2 over BA.2.12.1 was not due to stand-alone F486V substitution but as a result of the combination of multiple mutations. Our study upholds the urgency for continuous monitoring of SARS-CoV-2 Omicron variants with enhanced replication fitness.

5.
Nature ; 609(7928): 785-792, 2022 09.
Article in English | MEDLINE | ID: covidwho-1972633

ABSTRACT

Highly pathogenic coronaviruses, including severe acute respiratory syndrome coronavirus 2 (refs. 1,2) (SARS-CoV-2), Middle East respiratory syndrome coronavirus3 (MERS-CoV) and SARS-CoV-1 (ref. 4), vary in their transmissibility and pathogenicity. However, infection by all three viruses results in substantial apoptosis in cell culture5-7 and in patient tissues8-10, suggesting a potential link between apoptosis and pathogenesis of coronaviruses. Here we show that caspase-6, a cysteine-aspartic protease of the apoptosis cascade, serves as an important host factor for efficient coronavirus replication. We demonstrate that caspase-6 cleaves coronavirus nucleocapsid proteins, generating fragments that serve as interferon antagonists, thus facilitating virus replication. Inhibition of caspase-6 substantially attenuates lung pathology and body weight loss in golden Syrian hamsters infected with SARS-CoV-2 and improves the survival of mice expressing human DPP4 that are infected with mouse-adapted MERS-CoV. Our study reveals how coronaviruses exploit a component of the host apoptosis cascade to facilitate virus replication.


Subject(s)
Aspartic Acid , Caspase 6 , Coronavirus Infections , Coronavirus , Cysteine , Host-Pathogen Interactions , Virus Replication , Animals , Apoptosis , Aspartic Acid/metabolism , Caspase 6/metabolism , Coronavirus/growth & development , Coronavirus/pathogenicity , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Cricetinae , Cysteine/metabolism , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Humans , Interferons/antagonists & inhibitors , Interferons/immunology , Lung/pathology , Mesocricetus , Mice , Middle East Respiratory Syndrome Coronavirus , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Survival Rate , Weight Loss
6.
Science ; 377(6604): 428-433, 2022 07 22.
Article in English | MEDLINE | ID: covidwho-1901908

ABSTRACT

The in vivo pathogenicity, transmissibility, and fitness of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron (B.1.1.529) variant are not well understood. We compared these virological attributes of this new variant of concern (VOC) with those of the Delta (B.1.617.2) variant in a Syrian hamster model of COVID-19. Omicron-infected hamsters lost significantly less body weight and exhibited reduced clinical scores, respiratory tract viral burdens, cytokine and chemokine dysregulation, and lung damage than Delta-infected hamsters. Both variants were highly transmissible through contact transmission. In noncontact transmission studies Omicron demonstrated similar or higher transmissibility than Delta. Delta outcompeted Omicron without selection pressure, but this scenario changed once immune selection pressure with neutralizing antibodies-active against Delta but poorly active against Omicron-was introduced. Next-generation vaccines and antivirals effective against this new VOC are therefore urgently needed.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/transmission , Disease Models, Animal , Mesocricetus , SARS-CoV-2/pathogenicity , Virulence
7.
Emerg Microbes Infect ; 11(1): 1394-1401, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1830896

ABSTRACT

The fast-spreading Omicron variant of SARS-CoV-2 overwhelmed Hong Kong, causing the fifth wave of COVID-19. It remains to be determined what mitigation measures might have played a role in reversing the rising trend of confirmed cases in this major outbreak. The government of Hong Kong has launched the mass rapid antigen tests (RAT) in the population and the StayHomeSafe scheme since February 2022. In this study, we examined the impact of the mass RAT on disease transmission and the case fatality ratio. It was suggested that the implementation of RAT plausibly played a role in the steady decrease of the effective reproduction number, leading to diminished SARS-CoV-2 transmission. In addition, we projected the disease burden of the outbreak in a scenario analysis to highlight the necessity of the StayHomeSafe scheme in Hong Kong. The Omicron outbreak experience in Hong Kong may provide actionable insights for navigating the challenges of COVID-19 surges in other regions and countries.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Disease Outbreaks , Hong Kong/epidemiology , Humans , SARS-CoV-2/genetics
8.
Cell Mol Immunol ; 19(5): 588-601, 2022 05.
Article in English | MEDLINE | ID: covidwho-1830046

ABSTRACT

Live attenuated vaccines might elicit mucosal and sterilizing immunity against SARS-CoV-2 that the existing mRNA, adenoviral vector and inactivated vaccines fail to induce. Here, we describe a candidate live attenuated vaccine strain of SARS-CoV-2 in which the NSP16 gene, which encodes 2'-O-methyltransferase, is catalytically disrupted by a point mutation. This virus, designated d16, was severely attenuated in hamsters and transgenic mice, causing only asymptomatic and nonpathogenic infection. A single dose of d16 administered intranasally resulted in sterilizing immunity in both the upper and lower respiratory tracts of hamsters, thus preventing viral spread in a contact-based transmission model. It also robustly stimulated humoral and cell-mediated immune responses, thus conferring full protection against lethal challenge with SARS-CoV-2 in a transgenic mouse model. The neutralizing antibodies elicited by d16 effectively cross-reacted with several SARS-CoV-2 variants. Secretory immunoglobulin A was detected in the blood and nasal wash of vaccinated mice. Our work provides proof-of-principle evidence for harnessing NSP16-deficient SARS-CoV-2 for the development of live attenuated vaccines and paves the way for further preclinical studies of d16 as a prototypic vaccine strain, to which new features might be introduced to improve safety, transmissibility, immunogenicity and efficacy.


Subject(s)
COVID-19 , SARS-CoV-2 , Administration, Intranasal , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Cricetinae , Mice , Mice, Transgenic , Spike Glycoprotein, Coronavirus , Vaccines, Attenuated/genetics
9.
Clin Infect Dis ; 74(8): 1485-1488, 2022 04 28.
Article in English | MEDLINE | ID: covidwho-1816023

ABSTRACT

A false-positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse-transcription polymerase chain reaction result can lead to unnecessary public health measures. We report 2 individuals whose respiratory specimens were contaminated by an inactivated SARS-CoV-2 vaccine strain (CoronaVac), likely at vaccination premises. Incidentally, whole genome sequencing of CoronaVac showed adaptive deletions on the spike protein, which do not result in observable changes of antigenicity.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , Vaccination
10.
J Immunol ; 205(6): 1564-1579, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-694818

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human coronavirus causing severe disease and mortality. MERS-CoV infection failed to elicit robust IFN response, suggesting that the virus might have evolved strategies to evade host innate immune surveillance. In this study, we identified and characterized type I IFN antagonism of MERS-CoV open reading frame (ORF) 8b accessory protein. ORF8b was abundantly expressed in MERS-CoV-infected Huh-7 cells. When ectopically expressed, ORF8b inhibited IRF3-mediated IFN-ß expression induced by Sendai virus and poly(I:C). ORF8b was found to act at a step upstream of IRF3 to impede the interaction between IRF3 kinase IKKε and chaperone protein HSP70, which is required for the activation of IKKε and IRF3. An infection study using recombinant wild-type and ORF8b-deficient MERS-CoV further confirmed the suppressive role of ORF8b in type I IFN induction and its disruption of the colocalization of HSP70 with IKKε. Ectopic expression of HSP70 relieved suppression of IFN-ß expression by ORF8b in an IKKε-dependent manner. Enhancement of IFN-ß induction in cells infected with ORF8b-deficient virus was erased when HSP70 was depleted. Taken together, HSP70 chaperone is important for IKKε activation, and MERS-CoV ORF8b suppresses type I IFN expression by competing with IKKε for interaction with HSP70.


Subject(s)
Enzyme Activation/immunology , I-kappa B Kinase/immunology , Interferon Type I/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Viral Proteins/immunology , Betacoronavirus , COVID-19 , Cell Line , Coronavirus Infections , HSP70 Heat-Shock Proteins/immunology , HSP70 Heat-Shock Proteins/metabolism , Humans , I-kappa B Kinase/metabolism , Interferon Type I/metabolism , Middle East Respiratory Syndrome Coronavirus/metabolism , Pandemics , Pneumonia, Viral , SARS-CoV-2 , Viral Proteins/metabolism
11.
Emerg Microbes Infect ; 10(1): 291-304, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1062822

ABSTRACT

Effective treatments for coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Dexamethasone has been shown to confer survival benefits to certain groups of hospitalized patients, but whether glucocorticoids such as dexamethasone and methylprednisolone should be used together with antivirals to prevent a boost of SARS-CoV-2 replication remains to be determined. Here, we show the beneficial effect of methylprednisolone alone and in combination with remdesivir in the hamster model of SARS-CoV-2 infection. Treatment with methylprednisolone boosted RNA replication of SARS-CoV-2 but suppressed viral induction of proinflammatory cytokines in human monocyte-derived macrophages. Although methylprednisolone monotherapy alleviated body weight loss as well as nasal and pulmonary inflammation, viral loads increased and antibody response against the receptor-binding domain of spike protein attenuated. In contrast, a combination of methylprednisolone with remdesivir not only prevented body weight loss and inflammation, but also dampened viral protein expression and viral loads. In addition, the suppressive effect of methylprednisolone on antibody response was alleviated in the presence of remdesivir. Thus, combinational anti-inflammatory and antiviral therapy might be an effective, safer and more versatile treatment option for COVID-19. These data support testing of the efficacy of a combination of methylprednisolone and remdesivir for the treatment of COVID-19 in randomized controlled clinical trials.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Methylprednisolone/therapeutic use , SARS-CoV-2/drug effects , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/pharmacology , Alanine/therapeutic use , Animals , Antibodies, Viral/blood , Antiviral Agents/pharmacology , COVID-19/pathology , COVID-19/virology , Cytokines/biosynthesis , Cytokines/immunology , Disease Models, Animal , Drug Therapy, Combination , Female , Humans , Macrophages/immunology , Macrophages/virology , Male , Mesocricetus , Methylprednisolone/pharmacology , RNA, Viral , Respiratory System/pathology , Respiratory System/virology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Viral Load/drug effects , Virus Replication/drug effects
12.
Res Sq ; 2020 Oct 07.
Article in English | MEDLINE | ID: covidwho-869425

ABSTRACT

COVID-19 pandemic is the third zoonotic coronavirus (CoV) outbreak of the century after severe acute respiratory syndrome (SARS) in 2003 and Middle East respiratory syndrome (MERS) since 2012. Treatment options for CoVs are largely lacking. Here, we show that clofazimine, an anti-leprosy drug with a favorable safety and pharmacokinetics profile, possesses pan-coronaviral inhibitory activity, and can antagonize SARS-CoV-2 replication in multiple in vitro systems, including the human embryonic stem cell-derived cardiomyocytes and ex vivo lung cultures. The FDA-approved molecule was found to inhibit multiple steps of viral replication, suggesting multiple underlying antiviral mechanisms. In a hamster model of SARS-CoV-2 pathogenesis, prophylactic or therapeutic administration of clofazimine significantly reduced viral load in the lung and fecal viral shedding, and also prevented cytokine storm associated with viral infection. Additionally, clofazimine exhibited synergy when administered with remdesivir. Since clofazimine is orally bioavailable and has a comparatively low manufacturing cost, it is an attractive clinical candidate for outpatient treatment and remdesivir-based combinatorial therapy for hospitalized COVID-19 patients, particularly in developing countries. Taken together, our data provide evidence that clofazimine may have a role in the control of the current pandemic SARS-CoV-2, endemic MERS-CoV in the Middle East, and, possibly most importantly, emerging CoVs of the future.

13.
Nat Microbiol ; 5(11): 1439-1448, 2020 11.
Article in English | MEDLINE | ID: covidwho-841871

ABSTRACT

SARS-CoV-2 is causing a pandemic of COVID-19, with high infectivity and significant mortality1. Currently, therapeutic options for COVID-19 are limited. Historically, metal compounds have found use as antimicrobial agents, but their antiviral activities have rarely been explored. Here, we test a set of metallodrugs and related compounds, and identify ranitidine bismuth citrate, a commonly used drug for the treatment of Helicobacter pylori infection, as a potent anti-SARS-CoV-2 agent, both in vitro and in vivo. Ranitidine bismuth citrate exhibited low cytotoxicity and protected SARS-CoV-2-infected cells with a high selectivity index of 975. Importantly, ranitidine bismuth citrate suppressed SARS-CoV-2 replication, leading to decreased viral loads in both upper and lower respiratory tracts, and relieved virus-associated pneumonia in a golden Syrian hamster model. In vitro studies showed that ranitidine bismuth citrate and its related compounds exhibited inhibition towards both the ATPase (IC50 = 0.69 µM) and DNA-unwinding (IC50 = 0.70 µM) activities of the SARS-CoV-2 helicase via an irreversible displacement of zinc(II) ions from the enzyme by bismuth(III) ions. Our findings highlight viral helicase as a druggable target and the clinical potential of bismuth(III) drugs or other metallodrugs for the treatment of SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Bismuth/pharmacology , Coronavirus Infections/virology , Pneumonia, Viral/virology , Ranitidine/analogs & derivatives , Virus Replication/drug effects , Animals , Betacoronavirus/physiology , COVID-19 , Chemokines/metabolism , Chlorocebus aethiops , Coronavirus Infections/drug therapy , Cytokines/metabolism , Disease Models, Animal , HEK293 Cells , Humans , Lung/pathology , Lung/virology , Mesocricetus , Pandemics , Pneumonia, Viral/drug therapy , RNA Helicases/metabolism , Ranitidine/pharmacology , SARS-CoV-2 , Vero Cells , Viral Load , COVID-19 Drug Treatment
15.
Emerg Microbes Infect ; 9(1): 558-570, 2020.
Article in English | MEDLINE | ID: covidwho-772803

ABSTRACT

World Health Organization has declared the ongoing outbreak of coronavirus disease 2019 (COVID-19) a Public Health Emergency of International Concern. The virus was named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the International Committee on Taxonomy of Viruses. Human infection with SARS-CoV-2 leads to a wide range of clinical manifestations ranging from asymptomatic, mild, moderate to severe. The severe cases present with pneumonia, which can progress to acute respiratory distress syndrome. The outbreak provides an opportunity for real-time tracking of an animal coronavirus that has just crossed species barrier to infect humans. The outcome of SARS-CoV-2 infection is largely determined by virus-host interaction. Here, we review the discovery, zoonotic origin, animal hosts, transmissibility and pathogenicity of SARS-CoV-2 in relation to its interplay with host antiviral defense. A comparison with SARS-CoV, Middle East respiratory syndrome coronavirus, community-acquired human coronaviruses and other pathogenic viruses including human immunodeficiency viruses is made. We summarize current understanding of the induction of a proinflammatory cytokine storm by other highly pathogenic human coronaviruses, their adaptation to humans and their usurpation of the cell death programmes. Important questions concerning the interaction between SARS-CoV-2 and host antiviral defence, including asymptomatic and presymptomatic virus shedding, are also discussed.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Host-Pathogen Interactions , Pneumonia, Viral/virology , Animals , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Disease Vectors , Humans , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2
16.
Emerg Microbes Infect ; 9(1): 1418-1428, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-595042

ABSTRACT

The Coronavirus disease 2019 (COVID-19), which is caused by the novel SARS-CoV-2 virus, is now causing a tremendous global health concern. Since its first appearance in December 2019, the outbreak has already caused over 5.8 million infections worldwide (till 29 May 2020), with more than 0.35 million deaths. Early virus-mediated immune suppression is believed to be one of the unique characteristics of SARS-CoV-2 infection and contributes at least partially to the viral pathogenesis. In this study, we identified the key viral interferon antagonists of SARS-CoV-2 and compared them with two well-characterized SARS-CoV interferon antagonists, PLpro and orf6. Here we demonstrated that the SARS-CoV-2 nsp13, nsp14, nsp15 and orf6, but not the unique orf8, could potently suppress primary interferon production and interferon signalling. Although SARS-CoV PLpro has been well-characterized for its potent interferon-antagonizing, deubiquitinase and protease activities, SARS-CoV-2 PLpro, despite sharing high amino acid sequence similarity with SARS-CoV, loses both interferon-antagonising and deubiquitinase activities. Among the 27 viral proteins, SARS-CoV-2 orf6 demonstrated the strongest suppression on both primary interferon production and interferon signalling. Orf6-deleted SARS-CoV-2 may be considered for the development of intranasal live-but-attenuated vaccine against COVID-19.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/metabolism , Endoribonucleases/metabolism , Exoribonucleases/metabolism , Interferons/antagonists & inhibitors , Interferons/metabolism , Methyltransferases/metabolism , Pneumonia, Viral/metabolism , RNA Helicases/metabolism , Viral Nonstructural Proteins/metabolism , Viral Proteins/metabolism , Betacoronavirus/genetics , COVID-19 , Cell Line , Coronavirus Infections/genetics , Coronavirus Infections/virology , Endoribonucleases/genetics , Exoribonucleases/genetics , Host-Pathogen Interactions , Humans , Interferons/genetics , Methyltransferases/genetics , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , RNA Helicases/genetics , SARS-CoV-2 , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics
17.
Int J Biol Sci ; 16(10): 1686-1697, 2020.
Article in English | MEDLINE | ID: covidwho-24916

ABSTRACT

Mutation and adaptation have driven the co-evolution of coronaviruses (CoVs) and their hosts, including human beings, for thousands of years. Before 2003, two human CoVs (HCoVs) were known to cause mild illness, such as common cold. The outbreaks of severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) have flipped the coin to reveal how devastating and life-threatening an HCoV infection could be. The emergence of SARS-CoV-2 in central China at the end of 2019 has thrusted CoVs into the spotlight again and surprised us with its high transmissibility but reduced pathogenicity compared to its sister SARS-CoV. HCoV infection is a zoonosis and understanding the zoonotic origins of HCoVs would serve us well. Most HCoVs originated from bats where they are non-pathogenic. The intermediate reservoir hosts of some HCoVs are also known. Identifying the animal hosts has direct implications in the prevention of human diseases. Investigating CoV-host interactions in animals might also derive important insight on CoV pathogenesis in humans. In this review, we present an overview of the existing knowledge about the seven HCoVs, with a focus on the history of their discovery as well as their zoonotic origins and interspecies transmission. Importantly, we compare and contrast the different HCoVs from a perspective of virus evolution and genome recombination. The current CoV disease 2019 (COVID-19) epidemic is discussed in this context. In addition, the requirements for successful host switches and the implications of virus evolution on disease severity are also highlighted.


Subject(s)
Betacoronavirus/isolation & purification , Chiroptera/virology , Coronavirus/classification , Evolution, Molecular , Zoonoses/transmission , Zoonoses/virology , Animals , COVID-19 , China , Coronavirus/isolation & purification , Coronavirus Infections , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Host-Pathogen Interactions , Humans , Pandemics , Pneumonia, Viral , Rodentia/virology , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL