Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329660

ABSTRACT

Following Delta, Omicron variant triggered a new wave of SARS-CoV-2 infection globally, adaptive evolution of the virus may not stop, the development of broad-spectrum antivirals is still urgent. We previously developed two hetero-bivalent nanobodies with potent neutralization against original WT SARS-CoV-2, termed aRBD-2-5 and aRBD-2-7, by fusing aRBD-2 with aRBD-5 or aRBD-7, respectively. Here, we resolved crystal structures of these nanobodies in complex with RBD, and found the epitope of aRBD-2 differs from that of aRBD-5, aRBD-7. aRBD-2 binds to a conserved epitope which renders its binding activity to all variants of concern (VOCs) including Omicron. Interestingly, although monovalent aRBD-5 and aRBD-7 lost binding to some variants, they effectively improved the overall affinity when transformed into the hetero-bivalent form after being fused with aRBD-2. Consistent with the high binding affinities, aRBD-2-5-Fc and aRBD-2-7-Fc exhibited ultra-potent neutralization to all five VOCs;particularly, aRBD-2-5-Fc neutralized authentic virus of Beta, Delta and Omicron with the IC50 of 5.98~9.65 ng/mL or 54.3~87.6 pM. Importantly, aRBD-2-5-Fc provided in vivo prophylactic protection for mice against WT and mouse-adapted SARS-CoV-2, and provided full protection against Omicron in hamster model when administrated either prophylactically or therapeutically. Taken together, we found a conserved epitope on RBD, and hetero-bivalent nanobodies had increased affinity for VOCs over its monovalent form, and provided potent and broad-spectrum protection both in vitro and in vivo against all tested major variants, and potentially future emerging variants. Our strategy provides a new solution in the development of therapeutic antibodies for COVID-19 caused by newly emergent VOCs.

3.
J Clin Invest ; 132(4)2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1705312

ABSTRACT

Many SARS-CoV-2 neutralizing antibodies (nAbs) lose potency against variants of concern. In this study, we developed 2 strategies to produce mutation-resistant antibodies. First, a yeast library expressing mutant receptor binding domains (RBDs) of the spike protein was utilized to screen for potent nAbs that are least susceptible to viral escape. Among the candidate antibodies, P5-22 displayed ultrahigh potency for virus neutralization as well as an outstanding mutation resistance profile. Additionally, P14-44 and P15-16 were recognized as mutation-resistant antibodies with broad betacoronavirus neutralization properties. P15-16 has only 1 binding hotspot, which is K378 in the RBD of SARS-CoV-2. The crystal structure of the P5-22, P14-44, and RBD ternary complex clarified the unique mechanisms that underlie the excellent mutation resistance profiles of these antibodies. Secondly, polymeric IgG enhanced antibody avidity by eliminating P5-22's only hotspot, residue F486 in the RBD, thereby potently blocking cell entry by mutant viruses. Structural and functional analyses of antibodies screened using both potency assays and the yeast RBD library revealed rare, ultrapotent, mutation-resistant nAbs against SARS-CoV-2.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/genetics , Antibody Affinity , B-Lymphocytes/immunology , Binding Sites/genetics , Binding Sites/immunology , Broadly Neutralizing Antibodies/blood , Broadly Neutralizing Antibodies/genetics , COVID-19/therapy , Cloning, Molecular , Disease Models, Animal , Humans , Immunization, Passive , Immunoglobulin G/immunology , In Vitro Techniques , Lung/virology , Mice , Mice, Inbred BALB C , Mutation , Neutralization Tests , Receptors, Virus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
4.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-307596

ABSTRACT

Background: There is no consensus as to when and how to reopen schools during the coronavirus disease 2019 (COVID-19) pandemic. This study aimed to evaluate the safety of reopening universities and colleges using a combined strategy in China. Methods: This cross-sectional study included 13,116 staffs and postgraduate students who have returned to the four campuses of the University of Science and Technology of China from 17 February (students returned from 12 May) to 2 July 2020. The returning to school was guided by a combined strategy including use of personal protective equipment, management of transportation, serological and nucleic acid tests for COVID-19, quarantine, and restrictions in and out of campus. Epidemiology history and COVID-19 related symptoms (fever, cough, and dyspnoea) were recorded in a subset of participants using an online questionnaire. Results: Among 13,116 participants, 4067 tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid and no positive results were identified. Of 9049 participants who chose to conduct antibody tests, 28 (0.3%) tested positive but no one was confirmed by the additional viral nucleic acid tests. Online questionnaires were collected from 5741 participants (mean 25.1 years, 35% female). High-risk exposures and COVID-19 related symptoms were reported in 8.3% and 7.4% of participants, respectively. Comorbidities (hypertension, diabetes, chronic pulmonary disease, and chronic kidney disease) were rare (0.2%-1.5%). Conclusions: Using a combined strategy for COVID-19 prevention and control, safely reopening of universities and colleges in low-risk regions is possible and laboratory screening for SARS-CoV-2 infection may not be necessary. Further studies need to cautiously evaluate the safety of reopening schools, if any, in the middle- and high-risk regions.

5.
Semin Immunol ; 55: 101533, 2021 06.
Article in English | MEDLINE | ID: covidwho-1521538

ABSTRACT

Responsible for more than 4.9 million deaths so far, COVID-19, caused by SARS-CoV-2, is instigating devastating effects on the global health care system whose impacts could be longer for the years to come. Acquiring a comprehensive knowledge of host-virus interaction is critical for designing effective vaccines and/or drugs. Understanding the evolution of the virus and the impact of genetic variability on host immune evasion and vaccine efficacy is helpful to design novel strategies to minimize the effects of the emerging variants of concern (VOC). Most vaccines under development and/or in current use target the spike protein owning to its unique function of host receptor binding, relatively conserved nature, potent immunogenicity in inducing neutralizing antibodies, and being a good target of T cell responses. However, emerging SARS-CoV-2 strains are exhibiting variability on the spike protein which could affect the efficacy of vaccines and antibody-based therapies in addition to enhancing viral immune evasion mechanisms. Currently, the degree to which mutations on the spike protein affect immunity and vaccination, and the ability of the current vaccines to confer protection against the emerging variants attracts much attention. This review discusses the implications of SARS-CoV-2 spike protein mutations on immune evasion and vaccine-induced immunity and forward directions which could contribute to future studies focusing on designing effective vaccines and/or immunotherapies to consider viral evolution. Combining vaccines derived from different regions of the spike protein that boost both the humoral and cellular wings of adaptive immunity could be the best options to cope with the emerging VOC.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19 , Immune Evasion , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , COVID-19/virology , Humans , Mutation , SARS-CoV-2/genetics
6.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-291858

ABSTRACT

Background: Highly pathogenic coronavirus disease-2019 (COVID-19) initiated by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has swiftly expanded throughout the world, and the fatality rate is still expanding due to the second wave in 2020 winters. This ongoing epidemic threatens public health with its new strain that emerged in some countries and might cause devastating deaths. Therefore, the host transcriptomic profile from patients during recovery is important for understanding this disease. MethodsWe performed transcriptome profiling of the RNAs isolated from the peripheral blood mononuclear cells (PBMCs) of recovered COVID-19 patients at hospital discharge of three months and five months respectively.ResultsOur results exposed diverse inflammatory genes and cytokine profiles to infection in recovered patients, and emphasize the highly expressed genes in COVID-19 patients like CCL4, CCL3, CXCL9, CXCL16, IL10, CSF2, VEGFA showed a decreasing trend in recovered patients. Furthermore, the integrated analysis predicted that JUN, CTSL, DDIT4, RRAS, BIRC5, CTSZ, CCNB2, CDK1, OAS1/2, IFIT3, RSAD2, and TP53I3 genes may be valuable for the recovery of COVID-19 patients. ConclusionsOur analysis confirms the presence of some inflammatory genes in recovered patients, suggesting COVID-19 patients did not return to their normal expression even after 5-months of discharge. Identification of transcriptome profiling of recovered patients provides useful information regarding its pathogenesis and might help for the development of better treatment for COVID-19.

7.
Expert Rev Vaccines ; 21(1): 69-81, 2022 01.
Article in English | MEDLINE | ID: covidwho-1462208

ABSTRACT

INTRODUCTION: Vaccines are the agreed upon weapon against the COVID-19 pandemic. This review discusses about COVID-19 subunit vaccines adjuvants and their signaling pathways, which could provide a glimpse into the selection of appropriate adjuvants for prospective vaccine development studies. AREAS COVERED: In the introduction, a brief background about the SARS-CoV-2 pandemic, the vaccine development race and classes of vaccine adjuvants were provided. . The antigen, trial stage, and types of adjuvants were extracted from the included articles and thun assimilated. Finally, the pattern recognition receptors (PRRs), their classes, cognate adjuvants, and potential signaling pathways were comprehended. EXPERT OPINION: Adjuvants are unsung heroes of subunit vaccines. The in silico studies are very vital in avoiding several costly trial errors and save much work times. The majority of the (pre)clinical studies are promising. It is encouraging that most of the selected adjuvants are novel. Much emphasis must be paid to the optimal paring of antigen-adjuvant-PRRs for obtaining the desired vaccine effect. A good subunit vaccine/adjuvant is one that has high efficacy, safety, dose sparing, and rapid seroconversion rate and broad spectrum of immune response. In the years to come, COVID-19 adjuvanted subunit vaccines are expected to have superior utility than any other vaccines for various reasons.


Subject(s)
COVID-19 Vaccines , Signal Transduction , COVID-19 , Humans , Pandemics , Vaccines, Subunit
8.
Anal Chem ; 93(42): 14238-14246, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1461947

ABSTRACT

Direct detection of SARS-CoV-2 in biological specimens is often challenging due to the low abundance of viral components and lack of enough sensitivity. Herein, we developed a new type of chemiluminescent functionalized magnetic nanomaterial for sensitive detection of the SARS-CoV-2 antigen. First, HAuCl4 was reduced by N-(aminobutyl)-N-(ethylisoluminol) (ABEI) in the presence of amino magnetic beads (MB-NH2) to generate ABEI-AuNPs, which were directly assembled on the surface of MB-NH2. Then, Co2+ was modified onto the surface to form MB@ABEI-Au/Co2+ (MAA/Co2+). MAA/Co2+ exhibited good chemiluminescence (CL) and magnetic properties. It was also found that it was easy for the antibody to be connected with MAA/Co2+. Accordingly, MAA/Co2+ was used as a sensing interface to construct a label-free immunoassay for rapid detection of the N protein in SARS-CoV-2. The immunoassay showed a linear range from 0.1 pg/mL to 10 ng/mL and a low detection limit of 69 fg/mL, which was superior to previously reported methods for N protein detection. It also demonstrated good selectivity by virtue of magnetic separation, which effectively removed a sample matrix after immunoreactions. It was successfully applied for the detection of the N protein in spiked human serum and saliva samples. Furthermore, the immunoassay was integrated with an automatic CL analyzer with magnetic separation to detect the N protein in patient serums and rehabilitation patient serums with satisfactory results. Thus, the CL immunoassay without a complicated labeling procedure is sensitive, selective, fast, simple, and cost-effective, which may be used to combat the COVID-19 pandemic. Finally, the CL quenching mechanism of the N protein in the immunoassay was also explored.


Subject(s)
COVID-19 , Metal Nanoparticles , Gold , Humans , Immunoassay , Limit of Detection , Luminescence , Luminescent Measurements , Pandemics , SARS-CoV-2
9.
Sens Actuators B Chem ; 349: 130739, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1447159

ABSTRACT

Accurate and efficient early diagnosis is crucial for the control of COVID-19 pandemic. However, methods that can balance sensitivity, high throughput, detection speed and automation simultaneously are still scarce. Here, we report an automatic label-free chemiluminescence immunoassay (CLIA) for rapid SARS-CoV-2 nucleocapsid protein (NP) detection with high sensitivity and throughput. N-(4-aminobutyl)-N-ethylisoluminol and Co2+ dual-functionalized chemiluminescent magnetic beads (dfCL-MB) were first applied to the detection of protein by a novel and simple strategy. Sulphydryl polyethylene glycol was coated on the surface of dfCL-MB so as to assemble dfCL-MB and antibody conjugated gold nanoparticles through Au-S bond. Considering the high-risk application scenarios, the immunosensor was integrated with an automatic chemiluminescence analyzer so that the whole testing procedure could be carried out automatically without manual operation. A linear correlation between CL intensities and the logarithm of NP concentration was obtained in the range of 0.1-10,000 pg/mL with a detection limit of 21 fg/mL. The whole process cost 25 min and the sample compartment can bear 24 samples simultaneously. The spiked human serum samples and serum samples from COVID-19 patients were determined with satisfactory recoveries of 91.1-109.4%, suggesting that the proposed label-free CLIA is of great potential for SARS-CoV-2 NP detection in practice.

10.
Front Immunol ; 12: 715464, 2021.
Article in English | MEDLINE | ID: covidwho-1430698

ABSTRACT

The mutants resulted from the ongoing SARS-CoV-2 epidemic have showed resistance to antibody neutralization and vaccine-induced immune response. The present study isolated and identified two novel SARS-CoV-2 neutralizing antibodies (nAbs) from convalescent COVID-19 patients. These two nAbs (XG81 and XG83) were then systemically compared with nine nAbs that were reconstructed by using published data, and revealed that, even though these two nAbs shared targeting epitopes on spike protein, they were different from any of the nine nAbs. Compared with XG81, XG83 exhibited a higher RBD binding affinity and neutralization potency against wild-typed pseudovirus, variant pseudoviruses with mutated spike proteins, such as D614G, E484Q, and A475V, as well as the authentic SARS-CoV-2 virus. To explore potential broadly neutralizing antibodies, heavy and light chains from all 18 nAbs (16 published nAbs, XG81 and XG83) were cross-recombined, and some of the functional antibodies were screened and studied for RBD binding affinity, and neutralizing activity against pseudovirus and the authentic SARS-CoV-2 virus. The results demonstrated that several recombined antibodies had a more potent neutralization activity against variant pseudoviruses compared with the originally paired Abs. Taken together, the novel neutralizing antibodies identified in this study are a likely valuable addition to candidate antibody drugs for the development of clinical therapeutic agents against SARS-CoV-2 to minimize mutational escape.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , Broadly Neutralizing Antibodies/therapeutic use , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/genetics , Antibodies, Viral/therapeutic use , Antibody Affinity/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/genetics , COVID-19/immunology , COVID-19/therapy , Cell Line , Epitopes/immunology , Humans , Immunotherapy/methods , Neutralization Tests , SARS-CoV-2/drug effects
11.
Cell Rep ; 36(11): 109708, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1372908

ABSTRACT

Cellular immunity is important in determining the disease severity of COVID-19 patients. However, current understanding of SARS-CoV-2 epitopes mediating cellular immunity is limited. Here we apply T-Scan, a recently developed method, to identify CD8+ T cell epitopes from COVID-19 patients of four major HLA-A alleles. Several identified epitopes are conserved across human coronaviruses, which might mediate pre-existing cellular immunity to SARS-CoV-2. In addition, we identify and validate four epitopes that were mutated in the newly circulating variants, including the Delta variant. The mutations significantly reduce T cell responses to the epitope peptides in convalescent and vaccinated samples. We further determine the crystal structure of HLA-A∗02:01/HLA-A∗24:02 in complex with the epitope KIA_S/NYN_S, respectively, which reveals the importance of K417 and L452 of the spike protein for binding to HLA. Our data suggest that evading cellular immunity might contribute to the increased transmissibility and disease severity associated with the new SARS-CoV-2 variants.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , Immunity, Cellular/immunology , SARS-CoV-2/immunology , Amino Acid Sequence , Humans , Spike Glycoprotein, Coronavirus/immunology
12.
ACS Sens ; 6(7): 2709-2719, 2021 07 23.
Article in English | MEDLINE | ID: covidwho-1310777

ABSTRACT

The spread of Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), resulting in a global pandemic with around four million deaths. Although there are a variety of nucleic acid-based tests for detecting SARS-CoV-2, these methods have a relatively high cost and require expensive supporting equipment. To overcome these limitations and improve the efficiency of SARS-CoV-2 diagnosis, we developed a microfluidic platform that collected serum by a pulling-force spinning top and paper-based microfluidic enzyme-linked immunosorbent assay (ELISA) for quantitative IgA/IgM/IgG measurements in an instrument-free way. We further validated the paper-based microfluidic ELISA analysis of SARS-CoV-2 receptor-binding domain (RBD)-specific IgA/IgM/IgG antibodies from human blood samples as a good measurement with higher sensitivity compared with traditional IgM/IgG detection (99.7% vs 95.6%) for early illness onset patients. In conclusion, we provide an alternative solution for the diagnosis of SARS-CoV-2 in a portable manner by this smart integration of pulling-force spinning top and paper-based microfluidic immunoassay.


Subject(s)
COVID-19 Testing , COVID-19 , Enzyme-Linked Immunosorbent Assay , Lab-On-A-Chip Devices , Antibodies, Viral/blood , COVID-19/diagnosis , Humans , SARS-CoV-2 , Sensitivity and Specificity
13.
Pathogens ; 10(7)2021 Jul 12.
Article in English | MEDLINE | ID: covidwho-1308389

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global concern. Immunoglobin A (IgA) contributes to virus neutralization at the early stage of infection. Longitudinal studies are needed to assess whether SARS-CoV-2-specific IgA production persists for a longer time in patients recovered from severe COVID-19 and its lasting symptoms that can have disabling consequences should also be alerted to susceptible hosts. Here, we tracked the anti-SARS-CoV-2 spike protein receptor-binding domain (RBD) antibody levels in a cohort of 88 COVID-19 patients. We found that 52.3% of the patients produced more anti-SARS-CoV-2 RBD IgA than IgG or IgM, and the levels of IgA remained stable during 4-41 days of infection. One of these IgA-dominant COVID-19 patients, concurrently with IgA nephropathy (IgAN), presented with elevated serum creatinine and worse proteinuria during the infection, which continued until seven months post-infection. The serum levels of anti-SARS-CoV-2 RBD and total IgA were higher in this patient than in healthy controls. Changes in the composition of the intestinal microbiota, increased IgA highly coated bacteria, and elevated concentration of the proinflammatory cytokine IL-18 were indicative of potential involvement of intestinal dysbiosis and inflammation to the systemic IgA level and, consequently, the disease progression. Collectively, our work highlighted the potential adverse effect of the mucosal immune response to SARS-CoV-2 infection, and that additional care should be taken with COVID-19 patients presenting with chronic diseases such as IgAN.

14.
Med Microecol ; 5: 100023, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-1281499

ABSTRACT

The ongoing global pandemic of COVID-19 disease, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mainly infect lung epithelial cells, and spread mainly through respiratory droplets. However, recent studies showed potential intestinal infection of SARS-CoV-2, implicated the possibility that the intestinal infection of SARS-CoV-2 may correlate with the dysbiosis of gut microbiota, as well as the severity of COVID-19 symptoms. Here, we investigated the alteration of the gut microbiota in COVID-19 patients, as well as analyzed the correlation between the altered microbes and the levels of intestinal inflammatory cytokine IL-18, which was reported to be elevated in the serum of in COVID-19 patients. Comparing with healthy controls or seasonal flu patients, the gut microbiota showed significantly reduced diversity, with increased opportunistic pathogens in COVID-19 patients. Also, IL-18 level was higher in the fecal samples of COVID-19 patients than in those of either healthy controls or seasonal flu patients. Moreover, the IL-18 levels were even higher in the fecal supernatants obtained from COVID-19 patients that tested positive for SARS-CoV-2 RNA than those that tested negative in fecal samples. These results indicate that changes in gut microbiota composition might contribute to SARS-CoV-2-induced production of inflammatory cytokines in the intestine and potentially also to the onset of a cytokine storm.

15.
Front Mol Biosci ; 8: 670815, 2021.
Article in English | MEDLINE | ID: covidwho-1278417

ABSTRACT

The 2019-2020 winter was marked by the emergence of a new coronavirus (SARS-CoV-2) related disease (COVID-19), which started in Wuhan, China. Its high human-to-human transmission ability led to a worldwide spread within few weeks and has caused substantial human loss. Mechanical antiviral control approach, drug repositioning, and use of COVID-19 convalescent plasmas (CPs) were the first line strategies utilized to mitigate the viral spread, yet insufficient. The urgent need to contain this deadly pandemic has led searchers and pharmaceutical companies to develop vaccines. However, not all vaccines manufactured are safe. Besides, an alternative and effective treatment option for such an infectious disease would include pure anti-viral neutralizing monoclonal antibodies (NmAbs), which can block the virus at specific molecular targets from entering cells by inhibiting virus-cell structural complex formation, with more safety and efficiency than the CP. Indeed, there is a lot of molecular evidence about the protector effect and the use of molecular feature-based NmAbs as promising therapeutics to contain COVID-19. Thus, from the scientific publication database screening, we here retrieved antibody-related papers and summarized the repertory of characterized NmAbs against SARS-CoV-2, their molecular neutralization mechanisms, and their immunotherapeutic pros and cons. About 500 anti-SARS-CoV-2 NmAbs, characterized through competitive binding assays and neutralization efficacy, were reported at the writing time (January 2021). All NmAbs bind respectively to SARS-CoV-2 S and exhibit high molecular neutralizing effects against wild-type and/or pseudotyped virus. Overall, we defined six NmAb groups blocking SARS-CoV-2 through different molecular neutralization mechanisms, from which five potential neutralization sites on SARS-CoV-2 S protein are described. Therefore, more efforts are needed to develop NmAbs-based cocktails to mitigate COVID-19.

16.
J Med Virol ; 93(3): 1443-1448, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196454

ABSTRACT

Our study intended to longitudinally explore the prediction effect of immunoglobulin A (IgA) on pulmonary exudation progression in COVID-19 patients. The serum IgA was tested with chemiluminescence method. Autoregressive moving average model was used to extrapolate the IgA levels before hospital admission. The positive rate of IgA and IgG in our cohort was 97% and 79.0%, respectively. In this study, the IgA levels peaks within 10-15 days after admission, while the IgG levels peaks at admission. We found that the time difference between their peaks was about 10 days. Viral RNA detection results showed that the positive rate in sputum and feces were the highest. Blood gas analysis showed that deterioration of hypoxia with the enlargement of pulmonary exudation area. And alveolar-arterial oxygen difference and oxygenation index were correlated with IgA and IgG. The results of biopsy showed that the epithelium of lung was exfoliated and the mucosa was edematous. In severe COVID-19 patients, the combination of IgA and IgG can predict the progress of pulmonary lesions and is closely related to hypoxemia and both also play an important defense role in invasion and destruction of bronchial and alveolar epithelium by SARS-CoV-2.


Subject(s)
COVID-19/pathology , COVID-19/virology , Immunoglobulin A/blood , Immunoglobulin G/blood , Sputum/virology , Aged , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Antibodies, Viral/blood , Bronchi/metabolism , Bronchi/virology , COVID-19/blood , COVID-19/metabolism , Female , Humans , Hypoxia/blood , Hypoxia/metabolism , Male , Middle Aged , Mucous Membrane/metabolism , Mucous Membrane/virology , Oxygen/metabolism , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/virology , RNA, Viral/genetics , SARS-CoV-2/genetics
17.
Front Chem ; 9: 622898, 2021.
Article in English | MEDLINE | ID: covidwho-1160231

ABSTRACT

The Coronavirus disease-19 (COVID-19) pandemic is still devastating the world causing significant social, economic, and political chaos. Corresponding to the absence of globally approved antiviral drugs for treatment and vaccines for controlling the pandemic, the number of cases and/or mortalities are still rising. Current patient management relies on supportive treatment and the use of repurposed drugs as an indispensable option. Of a crucial role in the viral life cycle, ongoing studies are looking for potential inhibitors to the main protease (Mpro) of severe acute respiratory syndrome Coronavirus -2 (SARS-CoV-2) to tackle the pandemic. Although promising results have been achieved in searching for drugs inhibiting the Mpro, work remains to be done on designing structure-based improved drugs. This review discusses the structural basis of potential inhibitors targeting SARS-CoV-2 Mpro, identifies gaps, and provides future directions. Further, compounds with potential Mpro based antiviral activity are highlighted.

18.
J Virol ; 2021 Mar 03.
Article in English | MEDLINE | ID: covidwho-1117219

ABSTRACT

Cell entry by SARS-CoV-2 requires the binding between the receptor-binding domain (RBD) of the viral Spike protein and the cellular angiotensin-converting enzyme 2 (ACE2). As such, RBD has become the major target for vaccine development, while RBD-specific antibodies are pursued as therapeutics. Here, we report the development and characterization of SARS-CoV-2 RBD-specific VHH/nanobody (Nb) from immunized alpacas. Seven RBD-specific Nbs with high stability were identified using phage display. They bind to SARS-CoV-2 RBD with affinity KD ranging from 2.6 to 113 nM, and six of them can block RBD-ACE2 interaction. The fusion of the Nbs with IgG1 Fc resulted in homodimers with greatly improved RBD-binding affinities (KD ranging from 72.7 pM to 4.5 nM) and nanomolar RBD-ACE2 blocking abilities. Furthermore, the fusion of two Nbs with non-overlapping epitopes resulted in hetero-bivalent Nbs, namely aRBD-2-5 and aRBD-2-7, with significantly higher RBD binding affinities (KD of 59.2 pM and 0.25 nM) and greatly enhanced SARS-CoV-2 neutralizing potency. The 50% neutralization dose (ND50) of aRBD-2-5 and aRBD-2-7 was 1.22 ng/mL (∼0.043 nM) and 3.18 ng/mL (∼0.111 nM), respectively. These high-affinity SARS-CoV-2 blocking Nbs could be further developed into therapeutics as well as diagnostic reagents for COVID-19.ImportanceTo date, SARS-CoV-2 has caused tremendous loss of human life and economic output worldwide. Although a few COVID-19 vaccines have been approved in several countries, the development of effective therapeutics, including SARS-CoV-2 targeting antibodies, remains critical. Due to their small size (13-15 kDa), high solubility, and stability, Nbs are particularly well suited for pulmonary delivery and more amenable to engineer into multivalent formats than the conventional antibody. Here, we report a series of new anti-SARS-CoV-2 Nbs isolated from immunized alpaca and two engineered hetero-bivalent Nbs. These potent neutralizing Nbs showed promise as potential therapeutics against COVID-19.

19.
Natl Sci Rev ; 7(10): 1527-1539, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1114859

ABSTRACT

In this population-based study, we identified 307 confirmed COVID-19 cases from massive surveillance, including 129 551 individuals screened at fever clinics or returning from Hubei and 3710 close contacts of confirmed COVID-19 patients. Among them, 17 patients were asymptomatic at initial clinical assessment. These asymptomatic patients on admission accounted for a small proportion of all patients (5.54%) with relatively weak transmissibility, and the detection rate was 0.35 per 100 close contacts. Moreover, the dynamics of symptoms of the 307 patients showed that the interval from symptom remission to the final negativity of viral nucleic acid was 5.0 days (interquartile range 2.0 to 11.0 days), with 14 patients (4.56%) having re-detectable viral RNA after discharge. Overall, our findings suggested asymptomatic carriers and presymptomatic patients only accounted for a small proportion of COVID-19 patients. Also, the asymptomatic phase during recovery from COVID-19 implied that negativity in viral RNA is necessary as a de-isolation criterion and follow-up is recommended.

20.
Front Pharmacol ; 11: 630500, 2020.
Article in English | MEDLINE | ID: covidwho-1088916

ABSTRACT

Effective, safe, and pharmacokinetically suitable drugs are urgently needed to curb the ongoing COVID-19 pandemic. The main protease or 3C-like protease (Mpro or 3CLpro) of SARS-CoV-2 is considered an important target to formulate potent drugs corresponding to its crucial role in virus replication and maturation in addition to its relatively conserved active site. Promising baseline data on the potency and safety of drugs targeting SARS-CoV-2 Mpro are currently available. However, preclinical and clinical data on the pharmacokinetic profiles of these drugs are very limited. This review discusses the potency, safety, and pharmacokinetic profiles of potential inhibitors of SARS-CoV-2 Mpro and forward directions on the development of future studies focusing on COVID-19 therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL